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Abstract: This paper deals with the problem of integral input-to-state stability (iISS) for switched nonlinear systems

with unstable subsystems. A Lyapunov-like function with indefinite derivative is introduced to derive the iISS of switched

nonlinear systems, which generalizes the classic Lyapunov function with positive definite derivative. Two cases are consid-

ered. A switched nonlinear system is iISS if all subsystems are iISS. Moreover, if some of subsystems are not iISS, the iISS

property is shown for the switched nonlinear systems. An illustrative example is presented to demonstrate the effectiveness

of the main results.
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1 Introduction
Switched systems, as an important class of hybrid

systems, arise in situations where several dynamical

subsystems are presented together with a switching sig-

nal specifying which subsystem is active. In recent

years, different properties of switched systems, espe-

cially stability issues, are extensively studied in litera-

ture[1–3]. It is well-known that, in general, switched sys-

tems do not necessarily inherit the properties of the sub-

systems they are comprised of. For example, a switched

system consisting of linear exponentially stable subsys-

tems might become unstable[1].

When a control system is affected by an external in-

put, it is important to guarantee the control system to be

input-to-state stable. The notion of input-to-state stabil-

ity (ISS) characterizes the continuity of state trajectories

on the initial states and the external inputs[4]. As a very

powerful analysis tool, ISS has got the attention of a

large number of scholars and the past two decades have

witnessed the development of ISS[5–10]. In [11], the

authors proved the ISS property for the impulsive sys-

tems based on an ISS Lyapunov function with the fixed

dwell-time condition, where the derivative of the Lya-

punov function need to be negative definite. In [12], it

provided partial Lyapunov characterizations for the IS-

S and iISS of the nonlinear systems. Notice that these

results require the Lyapunov function has negative def-

inite derivatives. In order to remove this restriction,

some researchers studied the iISS problem for the non-

linear systems by Lyapunov-like function with indefi-

nite derivative[13], but they did not consider the case of

switched systems with unstable subsystem, which usu-

ally undergo complex behaviors. This motivates us to

examine the iISS of the nonlinear switched systems.

In this paper, some effective results ensuring the

iISS are presented for switched nonlinear systems with

unstable subsystems by the Lyapunov-like function

with indefinite derivative. First, the not integral input-

to-state stability (non-iISS) is analysed for nonlin-

ear systems based on Lyapunov-like function method.
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Then, the sufficient conditions for switched nonlinear

systems are shown with all subsystems are iISS. Fur-

thermore, the iISS of switched nonlinear system is giv-

en if some subsystems are not iISS. Under this case,

the upper bound on the total time length of the unsta-

ble subsystem activated is given. Based on the men-

tioned Lyapunov-like function with indefinite deriva-

tive, a dissipation-like sufficient condition for the iISS

of switched systems is also derived. Finally, a numer-

ical example is employed to demonstrate the effective-

ness of the proposed method.

In summary, this work primarily has the following

contributions: 1) The problem of the integral input-

to-state stability for the switched nonlinear systems is

investigated based on the Lyapunov-like function with

indefinite derivative. The derivative of Lyapunov-like

function may be indefinite, rather than negative defi-

nite, which relaxes the sufficient condition for the iIS-

S of switched nonlinear systems. 2) The property of

iISS for switched nonlinear systems is considered un-

der average dwell time switching signals. Two cases

are considered. i) When each of the constituent sys-

tems is iISS, the switched nonlinear system is iISS.

ii) When only some of the constituent systems are

iISS, the iISS of switched nonlinear systems can also

be guaranteed, which extends available results on iISS

for switched nonlinear systems whose constituent sys-

tems are all iISS. 3) Based on the Lyapunov-like func-

tion with indefinite derivative method and average dwell

time switching signal technique, the sufficient condition

of iISS is extended to a dissipation-like sufficient con-

dition for the iISS of switched nonlinear system.

2 Problem formulation and preliminaries
Consider the following n-dimensional switched

nonlinear system:

ẋ(t) = fσ(t)(t, x(t), u(t)), t � t0, x(t0) = x0, (1)

where x ∈ R
n is the state; u ∈ Lm

∞ is the system input;

x0 ∈ R
n is the initial state and σ(·) : [t0,∞) → P =

{1, 2, · · · , N} is a piecewise constant, right continuous

function which specifies at each time t the index of the

active system; fi(·, ·, ·) : R
+ × R

n × R
m → R

n is

assumed to be locally Lipschitz in (t, x) and uniformly

continuous in u, and satisfy fi(·, 0, 0) = 0, i ∈ P .

The definitions of ISS and iISS are given below.

Definition 1[14] A continuous function α : [0, a)
→ [0,∞) is said to belong to class K if it is strictly in-

creasing and α(0) = 0. It is said to belong to class K∞
if a = ∞ and α(r) → ∞ as r → ∞. A continuous

function β : [0, a)× [0,∞) → [0,∞) is said to belong

to class KL if, for each fixed s, the mapping β(r, s)
belongs to class K with respect to r, for each fixed r,

the mapping β(r, s) is decreasing with respect to s, and

β(r, s) → 0 as s → ∞.

Definition 2[14] System (1) is said to be ISS, if

there exist a class KL function β and a class K func-

tion γ such that, for any initial state x0 and any bound-

ed input u(t), the solution x(t) exists for all t � t0 and

satisfies

‖x(t)‖ � β(‖x0‖, t− t0) + γ( sup
t0�s�t

‖u(s)‖).

(2)

Definition 3[4] System (1) is said to be iISS, if

there exist a KL function β, a K∞ function α, and a

K function γ, such that, for any initial state x0 and any

measurable, locally essentially bounded input u(t), the

solution exists for all t � t0 and satisfies

α(‖x(t)‖) � β(‖x0‖, t− t0) +
� t

t0
γ(‖u(τ)‖)dτ.

(3)

Definition 4 For any t � t0 and any switched

signal σ(ς), t0 � ς < t, let Nσ(t0, t) mean the num-

ber of switchings of σ(ς) during the interval [t0, t]. If

there exist N0 � 0 and τ > 0 such that Nσ(t0, t) �
N0 + (t − t0)/τ, then τ and N0 are called average

dwell time and the chatter bound, respectively. And,

Save[τ,N0] denotes the class of switching signals with

average dwell time τ and chatter bound N0.

In this following, two lemmas checking iISS and

non-iISS properties are given for nonlinear system

based on the Lyapunov-like function with indefinite

derivative.

Consider the following n-dimensional nonlinear

system:

ẋ(t) = f(t, x(t), u(t)), t � t0, x(t0) = x0, (4)

where x(t) : R+ → R
n is the state; x0 ∈ R

n is the

initial state; u(t) : R+ → R
m is the control input.

Lemma 1[13] Consider system (4). Assume

that there exists a continuously differentiable function

V (t, x) : R+ × R
n → R

+, functions α1, α2 ∈ K∞, a

function η ∈ K, a constant c and a continuous function

φ(t) : R+ → R, for all (t, x) ∈ R
+×R

n and u ∈ R
m,

such that

a) α1(‖x‖) � V (t, x) � α2(‖x‖);
b) V̇ (t, x) � φ(t)V (t, x) + η(‖u‖);
c)

� ∞

t0
φ+(τ)dτ � c < ∞;

d) there exist two constants δ > 0 and T > t0
satisfying � t

t0
φ−(τ)dτ � δ(t− t0), t > T, (5)

where
φ+(τ) = max{φ(τ), 0}, φ−(τ) = max{−φ(τ), 0},
then system (4) is iISS with γ(s) = Cη(s), where

C = e
∫∞
0

φ+(τ)dτ < ∞.
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Lemma 2 Consider system (4). If the condi-

tion (a) in Lemma 1 holds, and there is a continuous

function ϕ(t) : R
+ → R and a constant c̄, for all

(t, x) ∈ R
+ × R

n and u ∈ R
m, such that

e) V̇ (t, x) � ϕ(t)V (t, x) + η(‖u‖);
f)

� ∞

t0
ϕ−(τ)dτ � c̄ < ∞;

g) there exist two constants δ̄ > 0 and T > t0
satisfying � t

t0
ϕ+(τ)dτ � δ̄(t− t0), t > T, (6)

where

ϕ+(τ) = max{ϕ(τ), 0}, ϕ−(τ) = max{−ϕ(τ), 0},
then system (4) is non-iISS.

Proof We shall prove that the system is non-iISS

by contradiction. From a) and e), one can get

V (t, x) � e
∫t
t0

ϕ(τ)dτ
V0 +

� t

t0
η(‖u(s)‖)e

∫t
s
ϕ(τ)dτds,

(7)

where V0 = V (t0, x(t0)), for all t � t0. From f) and

g), we obtain

e
∫t
t0

ϕ(τ)dτ � e−c̄eδ̄(t−t0).

This together with (7) and a) implies

V (t, x) �

e−c̄eδ̄(t−t0)α1(‖x0‖) + e−c̄
� t

t0
η(‖u(τ)‖)dτ,

for all t � T , which combining the condition a) leads

to

‖x(t)‖ � α−1
2 (e−c̄eδ̄(t−t0)α1(‖x0‖)+

e−c̄
� t

t0
η(‖u(τ)‖)dτ) (8)

for all t � T with T > t0 being a constant.

If the system is iISS, then there exists a class KL
function β, a class K∞ function α and K function γ
such that

α(‖x(t)‖) � β(‖x0‖, t− t0)+� t

t0
γ(‖u(τ)‖)dτ (9)

for all t � t0, and x0 ∈ R
n/{0}. When the input

u(t) ≡ 0, the above two formulas can derive

‖x(t)‖ � α−1
2 (e−c̄eδ̄(t−t0)α1(‖x0‖)), ∀t � T, (10)

‖x(t)‖ � α−1(β(‖x0‖, t− t0)), (11)

respectively. This leads to a contradiction by letting

t → +∞ from (10) and (11). So system (4) is non-

iISS and the proof is complete.

3 Main results
In this section, the main results are given. Two cas-

es are considered. First, when all subsystems are iISS,

we prove that system (1) keeps the iISS property under

some restrictions. Second, when not all subsystems are

iISS, we establish some criteria verifying the iISS prop-

erty through the above lemmas. Further, we propose

a dissipation-like sufficient condition proofing the iISS

for system (1).

3.1 All subsystem iISS
Theorem 1 Consider system (1). If there exist a

class of continuously differentiable functions Vi(t, x) :
R

+ × R
n → R

+, class K∞ functions α1,i, α2,i, class

K functions ηi, constants ci and a constant μ > 1, con-

tinuous functions φi(t) : R
+ → R, for all (t, x) ∈

R
+ × R

n, such that

i) α1,i(‖x‖) � Vi(t, x) � α2,i(‖x‖);
ii) V̇i(t, x) � φi(t)Vi(t, x) + ηi(‖u‖);
iii) Vik(tk, x(tk)) � μVik−1

(tk, x(tk));

iv)
� ∞

t0
φ+
i (τ)dτ � ci < ∞;

v) there exist constants δi > 0 and T > t0 satisfy-

ing � t

t0
φ−
i (τ)dτ � δi(t− t0), ∀t > T, (12)

where

φ+
i (τ) = max{φi(τ), 0}, φ−

i (τ)=max{−φi(τ), 0}.
If the switching signal satisfies the average dwell time

τ > τ ∗ =
lnμ

δ
, δ = min

i∈P
{δi}, then system (1) is iISS.

Proof We have the switching sequence Σ = {x0 :
(i0, t0), · · · , (ik, tk), · · · |ik ∈ P , k ∈ N}, which

means that the ikth subsystem is active when t ∈ [tk,
tk+1). From the condition ii), we have

Vik(t, x(t)) �

e
∫t
tk

φik
(τ)dτ

Vik(tk, x(tk))+� t

tk
ηik(‖u(s)‖)e

∫t
s
φik

(τ)dτds

for all tk � t < tk+1. Taking iii) into account and by

iteration, we get

Vik(t, x(t)) �

μe
∫t
tk

φik
(τ)dτ

Vik−1
(tk, x(tk))+� t

tk
ηik(‖u(s)‖)e

∫t
s
φik

(τ)dτds �

μNσe
∫t
t0

φ̄(τ)dτ
Vi0(t0, x(t0)) + ec

� t

t0
η̄(‖u(s)‖)ds·

(μNσe
∫t2
t1

φi1 (τ)dτ+···+∫t
tk

φik
(τ)dτ

+ · · ·+
μe

∫t
tk

φik
(τ)dτ

+ 1), (13)

where φ̄(t) = max
i∈P

{φi(t)}, η̄(r) = max
i∈P

{ηi(r)},

c = max
i∈P

{ci}. Taking the following expression

� t

t0
φi(τ)dτ � ci −

� t

t0
φ−
i (τ)dτ (14)
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into mind, (13) indicates

Vik(t, x(t)) �

μNσVi0e
c−∫t

t0
φ̄−(τ)dτ

+
� t

t0
η̄(‖u(s)‖)ds ·

ec(μNσe
∫t2
t1

φi1 (τ)dτ+···+∫t
tk

φik
(τ)dτ

+ · · ·+ 1).

(15)

For conciseness and without loss of generality, we sup-

pose the im-subsystem is activated at time instant tm in

the following. By taking notice of (13), there holds

e
∫tm+1
tm

φim (τ)dτ+···+∫t
tk

φik
(τ)dτ � e

∫t
tm

φ̄(τ)dτ � ec.

(16)

Substituting (16) and i) into (15), we further derive

α1,ik(‖x(t)‖) �
α2,i0(‖x(t0)‖)ecμNσe

− ∫t
t0

φ̄−(τ)dτ
+

e2c
(μNσ+1 − 1)

μ− 1

� t

t0
η̄(‖u(s)‖)ds, ∀t � t0.

Due to the arbitrariness of k, this further gives

α1(‖x(t)‖) �
ᾱ2(‖x(t0)‖)e

lnμ
τ (t−t0)−

∫t
t0

φ̄−(τ)dτ × ecμN0+

e2c
(μNσ+1 − 1)

μ− 1

� t

t0
η̄(‖u(s)‖)ds, (17)

whereα1(r)=min
ik∈P

{α1,ik(r)}, ᾱ2(r)=max
ik∈P

{α2,ik(r)}.

From (v), there exists a finite time instant T � t0 such

that � t

t0
φ−
i (τ)dτ � δi(t− t0), ∀t � T. (18)

Construct a function with the form as

β(r, t) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ecμN0ᾱ2(r), t0 � t � T,

ecμN0ᾱ2(r)e
(
lnμ
τ

−δ)t, t � T + 1,

ecμN0ᾱ2(r)(T + 1− t+

(t− T )× e(
lnμ
τ

−δ)(T+1)), T < t < T + 1,

(19)

where δ = min
i∈P

{δi}, and δi is ensured by (12). From

(19), we know that β(r, t) is a continuous function for

a fixed r. On the other hand, letting r := δ − lnμ

τ
and

the convexity of e−rt yields

e−rt � T + 1− t+ e−r(T+1)(t− T )

for all T < t < T + 1. Inequality (20) implies β(r, t)
decreases in t when r is fixed. Thus, β(r, t) is a class

KL function.

Now, for all t � t0, we will prove that

ᾱ2(‖x0‖)ecμN0e
lnμ
τ (t−t0)e

− ∫t
t0

φ̄−(τ)dτ �
β(‖x0‖, t− t0). (20)

It is clear from condition v) that there exists a T > t0
such that (12) holds for all t > T . Inequality (20) indi-

cates that

ᾱ2(‖x0‖)ecμN0e
lnμ
τ (t−t0)e

− ∫t
t0

φ̄−(τ)dτ �
ᾱ2(‖x0‖)ecμN0e(

lnμ
τ −δ)(t−t0), ∀t > T. (21)

Combining (20) and (21), we obtain

ᾱ2(‖x0‖)ecμN0e
lnμ
τ (t−t0)e

− ∫t
t0

φ̄−(τ)dτ �
ᾱ2(‖x0‖)ecμN0(T + 1− (t− t0)+

e−r(T+1)(t− t0 − T )) =

β(‖x0‖, t− t0) (22)

for all T < t − t0 < T + 1. From (21) and (22), we

find that (20) holds for T < t − t0 < T + 1. And it is

trivial to show that (20) also holds for 0 � t − t0 � T
and t− t0 � T + 1. So, formula (20) is proved.

Obviously, from (17) and (20), we can get

α(‖x(t)‖) � β(‖x0‖, t− t0) +
� t

t0
γ(‖u(τ)‖)dτ,

where α(r) = α1(r), γ(r) = e2c
(μNσ+1 − 1)

μ− 1
η̄(r).

From Definition 2, we know that the above formula

guarantees that system (1) is iISS. This completes the

proof.

Remark 1 In Theorem 1, the switched system com-

posed of all iISS subsystems is iISS through the use of

Lyapunov-like function with indefinite derivative. When

u(t) = 0, the iISS problem can be simplified to asymptotical

stability analysis for system (1). Checking the asymptotic sta-

bility of system (1) using the traditional Lyapunov function the-

ory, its derivative is usually required to be negative definite[14].

Note that here the derivative of the Lyapunov-like function is

indefinite, which relaxes the Lyapunov-like condition to some

extent compared with the existing results.

3.2 Some subsystem not iISS
Theorem 2 Consider switched system (1). Sup-

pose that all conditions in Theorem 1 for the ith sub-

systems are satisfied. For the jth subsystems, if there

exist a class of continuously differentiable functions

Vj(t, x) : R+ × R
n → R

+, j ∈ P , class K∞ func-

tions α1,j, α2,j , functions ηj , η̄j ∈ K, two continuous

functions ϕj(t) and φj(t) : R
+ → R and two constants

cj , c̄j , and a constant μ > 1 such that

i) α1,j(‖x‖) � Vj(t, x) � α2,j(‖x‖);
ii) ϕj(t)Vj(t, x) + η̄j(‖u‖) � V̇j(t, x) �

φj(t)Vj(t, x) + ηj(‖u‖);
iii)

� ∞

t0
ϕ−

j (τ)dτ � c̄j < ∞,� ∞

t0
φ−
j (τ)dτ � cj < ∞;

iv) there exist constants δ̄j, δj > 0 and T > t0
satisfying� t

t0
ϕ+

j (τ)dτ � δ̄j(t− t0),
� t

t0
φ+
j (τ)dτ � δj(t− t0)
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for all t � T . If, at the switching instants tk, k =
0, 1, 2, 3, · · · , there holds

Vik(tk, x(tk)) � μVik−1
(tk, x(tk)), (23)

and there exists a constant δ with 0 < δ < δi satisfying

Σus

t− t0
� δi − δ

M
, (24)

where M = sup
t�t0

{φ−
i (t) + φ+

j (t)} is a finite constant,

and Σus denotes the length of all the time intervals

when the jth subsystem is activated in [t0, t). Then

switched system (1) is iISS under the switching sig-

nal satisfying condition (24) and the average dwell time

τ > τ ∗ =
lnμ

δ
.

Proof We have the switching sequence Σ = {x0:
(i0, t0), · · · , (ik, tk), · · · |ik ∈ P, k ∈ N}, which

means that the ikth subsystem is activated at the time

interval [tk, tk+1). For any t � t0, there exists a finite

positive integer k such that t ∈ [tk, tk+1). Without loss

of generality, we let the ith subsystem be activated in

[tk, tk+1) and [t0, t1). From the condition ii) of Theo-

rem 1, we have

Vi(t, x(t)) �

e
∫t
tk

φi(τ)dτVi(tk, x(tk))+� t

tk
ηi(‖u(s)‖)e

∫t
s
φi(τ)dτds, tk � t < tk+1.

Consider (23), it holds that

Vi(t, x(t)) �

μe
∫tk
tk−1

φj(τ)dτ+
∫t
tk

φi(τ)dτ × Vj(tk−1, x(tk−1))+� tk

tk−1

ηj(‖u(s)‖)e
∫tk
s

φj(τ)dτds× μe
∫t
tk

φi(τ)dτ+

� t

tk
ηi(‖u(s)‖)e

∫t
s
φi(τ)dτds. (25)

By iteration, we get

Vi(t, x(t)) �

μNσe
∫t1
t0

φi(τ)dτ · · · e
∫tk
tk−1

φj(τ)dτe
∫t
tk

φi(τ)dτV0+� t

t0
η(‖u(s)‖)ds(μNσe

∫t1
t0

φ+
i (τ)dτ

e
∫t
tk

φi(τ)dτ + · · ·+

μe
∫tk
tk−1

φ+
j (τ)dτ

e
∫t
tk

φi(τ)dτ + e
∫t
tk

φ+
i (τ)dτ

), (26)

where η(r) = max
i,j∈P

{ηi(r), ηj(r)}.

By the properties of φi(τ) and φj(τ), this further

indicates

e
∫t1
t0

φi(τ)dτe
∫t2
t1

φj(τ)dτ · · · e
∫tk
tk−1

φj(τ)dτe
∫t
tk

φi(τ)dτV0 �

e
∫t
t0

φ+
i (τ)−φ−

i (τ)dτ
e
∫t2
t1

+···+∫tk
tk−1

(φ−
i (τ)+φ+

j (τ))dτ
V0.

Applying iv) in Theorem 1 and (24), we obtain

μNσe
∫t1
t0

φi(τ)dτ · · · e
∫tk
tk−1

φj(τ)dτe
∫t
tk

φi(τ)dτV0 �
α2,i(‖x(t0‖)μN0eci+( lnμ

τ −δ)(t−t0) �

α2,i(‖x(t0‖)μN0eci+δi(T−t0)e(
lnμ
τ −δ)(t−t0)

(27)

for all t � T , where T > t0 is a finite constant.

To continue the analysis, we need to prove that the

part of (26) in the bracket is bounded by a finite con-

stant. We suppose the j-th subsystem is activated at

time instant tm in the following. By taking notice of

(24), there holds

e
∫tm
tm−1

φ+
i (τ)dτ · · · e

∫tk
tk−1

φj(τ)dτe
∫t
tk

φi(τ)dτ �
ecie−δi(t−tm)eΣusM . (28)

From (24), we have

Σus

tk − tm
� δi − δ

M
. (29)

Based on this property, one obtains

e
∫tm
tm−1

φ+
i (τ)dτ · · · e

∫tk
tk−1

φj(τ)dτe
∫t
tk

φi(τ)dτ � eci

(30)

for t � T , where T > t0 is finite. When t < T , it is

easy to show that{
e
∫tm
tm−1

φi(τ)dτ · · · e
∫tk
tk−1

φj(τ)dτe
∫t
tk

φi(τ)dτ � eci+MT ,

m = 1, 2, · · · , k + 1.

(31)

Combining (27) with (31) and applying i) in Theorem

1, we can get

α1,i(‖x(t)‖) �
α2,i(‖x(t0)‖)eci+δi(T−t0)e(

lnμ
τ −δ)(t−t0) × μN0+

(μNσ+1 − 1)

μ− 1
eci+MT

� t

t0
η(‖u(s)‖)ds. (32)

Based on Theorem 1, we further derive that there exist

a class KL function β and a class K functions γ, such

that

α(‖x(t)‖) � β(‖x0‖, t− t0) +
� t

t0
γ(‖u(τ)‖)dτ,

where β(r, t) = α2,i(r)μ
N0eci+δi(T−t0) for all t0 �

t � T ; β(r, t) = α2,i(r)μ
N0eci+δi(T−t0)e(

lnμ
τ −δ)t for

all t � T + 1; β(r, t) = α2,i(r)μ
N0eci+δi(T−t0)(T +

1− t+ e(
lnμ
τ −δ)(T+1)(t− T )) for all T < t < T + 1,

and

γ(r) =
(μNσ+1 − 1)

μ− 1
eci+MTη(‖u(r)‖).

So the switched system is iISS by Definition 2. The

proof is complete.

Remark 2 In Theorem 2, the positive constant δ can

depict the convergence rate of the switched system to a great

degree. The relationship δ < δi shows that the switched sys-

tem might be convergent with a slower speed than the stable

subsystem, which results from the influence of the unstable dy-

namics.

Under the constraint of switch conditions, the
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iISS property of the switched systems with unstable

subsystems is proved by using the indefinite derivative

Lyapunov-like function technique. In the following, we

will present a dissipation-like sufficient condition for

the iISS of system (1).

Corollary 1 Suppose that conditions i) iii) iv) v)

of Theorem 1 and conditions i) iii) iv) (23) of Theo-

rem 2 hold. In addition, if there exist class K functions

ρiq, ρ
j
q, ρ̄

j
q, q = {1, 2}, such that

V̇i(t, x) �
(ρi1(‖u‖) + φi(t))Vi(t, x) + ρi2(‖u‖), (33)

(ρ̄j1(‖u‖) + ϕj(t))Vj(t, x) + ρ̄j2(‖u‖) �
V̇j(t, x) �
(ρj1(‖u‖) + φj(t))Vj(t, x) + ρj2(‖u‖), (34)

then switched system (1) is iISS under the switching

signal satisfying condition (24) and the average dwell

time τ > τ ∗ =
lnμ

δ
.

4 Numerical example
Consider the following switched nonlinear system

ẋ(t) = fσ(t)(t, x(t))+gσ(t)(t, x(t))uσ(t)(t), (35)

for x(t) ∈ R
2, t � t0, where σ(t) : [0,∞) → {1, 2}

is the switching signal. Let

f1 =

⎡
⎣( 3

1 + t2
− 1)x2 − 2x1

−2x2

⎤
⎦ ,

f2 =

⎡
⎣(2− 4

1 + t2
)x2

2x1 − 2x2

⎤
⎦ ,

and g1 = [1 1]T, g2 = [0 4]T.

Choosing function V1(t, x) =
1

2
(x2

1+x2
2), we have

V̇1(t, x) � (
3

1 + t2
− 2)V1(t, x) + ‖u‖2,

where φ1(t) =
3

1 + t2
− 2 and η1(‖u‖) = ‖u‖2. Then

we get� ∞

0
φ+
1 (τ)dτ �

� ∞

0

3

1 + τ 2
dτ � 3π

2
< ∞,

and when t > 5, there holds� t

0
φ−
1 (τ)dτ � 6

5
t.

So the first subsystem is iISS with δ1 =
6

5
. Similar to

the above process, the candidate Lyapunov-like func-

tion for the second subsystem is chosen as V2(t, x) =
x2
1 + x2

2. Then computing the derivative of V2, we have

V̇2(t, x) � φ2(t, x)V2(t, x) + η2(‖u‖),
where φ2(t, x) = 3 − 4

1 + t2
and η2(‖u‖) = 4‖u‖2.

Furthermore, one gets� ∞

0
φ−
2 (τ)dτ � 2π,

and for t > 5, there holds� t

0
φ+
2 (τ)dτ � 9

5
t,

where δ2 =
9

5
.

When u1(t) = e−t and x0 = [1 − 1]T, we can

get the subsystem 1 is iISS by Lemma 1, then the state

trajectory of subsystem 1 is depicted in Fig.1. Similar-

ly, let u2(t) = e−t, x0 = [1 − 1]T, the state trajectory

of the subsystem 2 is depicted in Fig.2, from which we

can see that the subsystem 2 is non-iISS.

Fig. 1 The state trajectory of subsystem 1

Fig. 2 The state trajectory of subsystem 2

From the above analysis and based on Theorem 2,

we get M = sup
t�0

{φ−
i (t) + φ+

j (t)} = 5, μ = 2, and let

δ =
1

5
<

6

5
= δ1. The average dwell time scheme re-

quires τ > τ ∗ =
lnμ

δ
= 3.4657. Then, the switching

signal satisfies
Σus

t− t0
� 4

5
.

This switching signal meets the required condition
0.8

4
=

1

5
� 4

5
. By choosing the input u(t) = e−t and

the initial condition x0 = [1 − 1]T, one can get the

trajectories of the system and the switching signal re-
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spectively as shown in Fig.3, which characterizes the

iISS property of switched nonlinear system.

Fig. 3 The switching signal and the trajectory of the switched

system

5 Conclusions
In this paper, we have addressed the iISS problem

for the switched nonlinear systems. The existence of

unstable modes in switched systems makes the work

more challenging and meaningful. A Lyapunov-like

function with indefinite derivative is introduced, which

produces a relaxed iISS result. Using the average dwell

time technique, some iISS conditions have been pro-

vided. An example of second-order switched nonlinear

systems has been provided to show the effectiveness of

the main results.
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