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Abstract: This paper extends a frequency-domain worst-case identification method for single input single output (SISO)

errors-in-variables (EIV) models to its multiple input multiple output (MIMO) case. Similar to the SISO case, the identified

model set for a MIMO EIV model is described by an estimated nominal system model and its worst-case error bound. The

estimated nominal system model is characterized by a normalized right graph symbol and its worst-case error bound with

possibly less conservativeness is quantified by the v-gap metric using a priori and a posteriori information on the EIV model.

As a consequence, such model set is well suited to subsequent robust controller design via the H∞ loop-shaping method

proposed by Vinnicombe. Finally, the proposed identification method is verified by a numerical simulation example.
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1 Introduction
It is well-known that a large number of multiple in-

put multiple output (MIMO) errors-in-variables (EIV)

models exist in the real world. Take the aerospace en-

gineering area as an example, an attitude model of a

free-flying aircraft usually has 3 inputs and 3 outputs,

which may be rotational torques and attitude angles in

the body coordinate axes, respectively. However, the

available measurements for these variables are typical-

ly superimposed by various disturbing noises and thus

result in a MIMO EIV model. As a consequence, in-

vestigations on identification methods for such models

have particularly significant application values.

Generally speaking, MIMO EIV model identifica-

tion methods can be classified into two major cate-

gories. One category is capable of providing users with

a nominal system model and a possible noise model.

Such models usually have uniqueness, i.e., identifiabil-

ity, and the corresponding methods mainly derive from

classical parameter identification methods[1–2]. The oth-

er category can supply users a model set, which consists

of numerous models and thus there exists no unique-

ness. Söderström put forward a very general estimation

method for the identification of system and noise mod-

els in terms of construction of instrumental variables[3].

A recursive identification method for estimating matrix

coefficients of the multivariable EIV systems was in-

vestigated by Chen[4]. Guidorzi and Diversi proposed

a Frisch scheme based EIV identification method when

inputs and outputs are corrupted with white noises[5–6].

On the basis of a consensus algorithm, Stanković et al.

studied a decentralized identification approach for the
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MIMO EIV models[7]. Subspace state-space identifica-

tion (4SID) methods are also available for MIMO EIV

model identification[8]. Although the state-space real-

izations given by the 4SID methods are non-unique,

their representations in the form of transfer functions

are the same. Apart from the aforementioned identifica-

tion methods belonging to the first category, the second

category also has undergone great developments. Green

and Anderson contributed a frequency-domain estima-

tion method dealing with MIMO EIV model[9]. Roorda

and Heij presented the global total least-squares algo-

rithm to estimate time-domain multivariable EIV mod-

els[10]. Under some certain deterministic framework,

Geng et al. extended a frequency-domain L2-optimal

identification method to the MIMO case and studied its

algorithm implementation issues[11–12].

The major contribution of this paper is to extend

an original worst-case identification method for (SISO

EIV) models to its MIMO case. Similar to the SISO

case, the identified model set is comprised of a nominal

system model and its worst-case error bound. In order

to quantify a less conservative worst-case error bound

for the MIMO nominal system model, the v-gap met-

ric is employed as not only a minimization criterion for

parameter estimation but also a metric for characteriza-

tion of input and output disturbing noises[13–14]. Howev-

er, the quantification of the worst-case error in the MI-

MO framework is more difficult than that in the SISO

case and thus needs more investigations. As a conse-

quence, this paper first proposes an underlying MIMO

EIV identification framework. Then, a new quantifica-

tion method is derived to determine the worst-case error

bound for a nominal system model optimized from the

minimization of the v-gap metric criterion. With this er-

ror bound in hand, the convergent theorem for the iden-

tification algorithm can be obtained subsequently. The

most charming feature of the proposed method is that

an advanced loop-shaping based robust controller de-

sign approach is readily available for such model set[15].

This kind of model set makes sharp comparison with the

resulting models obtained from the most existing EIV

model identification methods since the controller syn-

thesis for the latter models needs further research in the

future.

The notations in this paper are stated as follows.

T represents the set of angular frequencies in the in-

terval [0, 2π]. Lm×n
2 , Lm×n

∞ , Hm×n
2 and Hm×n

∞ are the

function subspaces in the Hardy space. δv(M1,M2) de-

notes the v-gap metric of M1(λ) ∈ Hp×q
∞ and M2(λ)

∈ Hp×q
∞ . σ̄(X) and σ(X) represent the maximum

and minimum singular values of the complex matrix

X , respectively. For any M(λ) ∈ Lp×q
∞ , M∗(λ) =

MT(λ−1). C
m×n stands for the subspace of m × n-

dimensional complex matrices. R
m×n stands for the

subspace of m× n-dimensional real matrices.

The remainder of this paper is organized as follows.

Section 2 formulates an underlying MIMO EIV iden-

tification framework. In Section 3, the quantification

of the worst-case error for the nominal system model

and the derivation of the robust convergent theorem are

detailed. Both constraint conditions and implementa-

tion steps for the identification algorithm are addressed

in Section 4. Section 5 uses a numerical simulation to

demonstrate the effectiveness of the proposed method.

Finally, conclusions related to this study are drawn in

Section 6.

2 Problem formulation
The paper considers the MIMO EIV model struc-

ture shown in Fig.1, in which the following determinis-

tic signal relations hold

y(λ) = P0(λ)u(λ), (1)[
ym(λ)
um(λ)

]
=

[
y(λ)
u(λ)

]
+

[
ny(λ)
nu(λ)

]
, (2)

where P0(λ) ∈ Hp×q
∞ is an open-loop MIMO discrete-

time time-invariant linear true system; u(λ) =
[u1(λ) · · · uq(λ)]

T ∈ Lq
2 and y(λ) = [y1(λ) · · ·

yp(λ)]
T ∈ Lp

2 are q-dimensional input variable and p-

dimensional output variable, respectively; the additive

superimposition of the input noise nu(λ) = [n1
u(λ) · · ·

nq
u(λ)]

T ∈ Lq
2 and the output noise ny(λ) = [n1

y(λ)
· · · np

y(λ)]
T ∈ Lp

2 on u(λ) and y(λ) results in the mea-

surable input variable um(λ) = [u1
m(λ) · · · uq

m(λ)]
T ∈

Lq
2 and the measurable output variable ym(λ) = [y1

m(λ)
· · · yp

m(λ)]
T ∈ Lp

2, respectively. The following assump-

tion is made for the identification of the MIMO EIV

model in Fig.1.

Fig. 1 An MIMO EIV model structure

Assumption 1 The disturbing noises ny and nu

belong to the following noise set:

SN1
(ε, ρ0) � {(ny, nu) : δv(P0, Pm) � ε < ρ0,

ρ0 � inf
ω∈T

σ(D0(e
jω))}, (3)

where

Pm(λ) �

⎡
⎢⎢⎢⎢⎢⎣

y1
m(λ)

u1
m(λ)

· · · y1
m(λ)

uq
m(λ)

...
. . .

...
yp
m(λ)

u1
m(λ)

· · · yp
m(λ)

uq
m(λ)

⎤
⎥⎥⎥⎥⎥⎦ ∈ Lp×q

∞ , (4)

D0(e
jω) is the frequency response of the denomina-

tor factor of a normalized right graph symbol (NRGS)
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G0(λ) = [NT
0 (λ) DT

0 (λ)]
T ∈ H(p+q)×q

∞ of P0(λ).

The above assumption is in part used to ensure that

the disturbed model Pm(λ) defined in (4) belongs to

Hp×q
∞ and suppose that Gm(λ) = [NT

m(λ) DT
m(λ)]

T ∈
H(p+q)×q

∞ is one of its NRGSs.

The a priori model set of the open-loop system

P0(λ) can be defined by its NRGSs in the following

way:

SM(β) � {GP(λ) : ‖ĠP‖∞ � β,

GP(λ) ∈ SG(P0)}, (5)

where ĠP denotes the first-order derivative of GP(λ)
with respect to λ and SG(P0) is the NRGS set of P0(λ).
The models belonging to SM(β) are thus implied to be

continuous with respect to λ.

The available a posteriori frequency-domain exper-

imental data collected from identification experiments

are defined as

SD(W) �{(yωi
m , uωi

m ) � (ym(e
jωi), um(e

jωi)) :

ωi ∈ W � {ω1, · · · , ωN} and

ω1 < ω2 < · · · < ωN} (6)

with N being the length of sampled data. Since a

Nyquist plot of any discrete-time transfer function has

the symmetry with respect to the real axis, it is suffi-

cient to use the sampling angular frequencies in an in-

terval (0, π) for the identification. The maximum gap

between the adjacent angular frequencies in W is thus

computed as

δ̄ � max{ω1, π − ωN ,max
i∈N

{ωi+1 − ωi}} (7)

with N � {1, · · · , N − 1}.

In the foregoing stated MIMO EIV framework, the

identification objectives are two folds (i) use the a poste-

riori frequency-domain measurements SD(W) from the

angular frequency interval (0, π) to estimate a nominal

system model P (λ) ∈ Hp×q
∞ with G(λ) ∈ H(p+q)×q

∞
being one of its NRGSs and (ii) quantify the worst-case

error of P (λ) as an upper bound τ according to the a

priori sets SN1
(ε, ρ0) and SM(β). As a result, P (λ)

and τ are able to describe a model set, which is well

suited to the robust controller synthesis.

3 Identification algorithm
Similar to the SISO case, the following minimiza-

tion criterion for estimation of the nominal model P (λ)
is employed[13–14, 16]

min
X∈R(p+q)×nq

Q
ωi
F ∈Cq×q

max{max
ωi∈W

{σ̄(Gωi
m − F ωi

X Qωi

F )},

c‖ḞX‖∞}, (8)

where Gωi
m is the frequency response of Gm(λ) evalu-

ated at ωi ∈ W and can be generated by

Gωi
m =

[
Nωi

m

Dωi
m

]
� Gm(e

jωi) =

[
Nm(e

jωi)
Dm(e

jωi)

]
=[

P ωi
m

[
Iq + (P ωi

m )
∗
P ωi

m

]− 1
2[

Iq + (P ωi
m )

∗
P ωi

m

]− 1
2

]
(9)

with P ωi
m being the frequency response of Pm(λ)

evaluated at ωi ∈ W ; F ωi

X is the frequency response

of a parameterized right factor model FX(λ) =

[(NX
F (λ))T (DX

F (λ))T]T of P (λ), i.e., P (λ) =

NX
F (λ)(DX

F (λ))−1 and it is an affine function of X

FX(λ) =

[
NX

F (λ)
DX

F (λ)

]
=[

X1
N X2

N · · · Xn
N

X1
D X2

D · · · Xn
D

]
[Iq ⊗ Λ(λ)] =[

XN

XD

]
V (λ) = XV (λ), (10)

where Λ(λ) � [1 λ · · · λn−1]
T

and ⊗ stands for the

Kronecker product; Qωi

F ∈ C
q×q is a complex matrix to

be optimized at ωi; c is a user-chosen constant weight

and ḞX is the first-order derivative of FX(λ) with re-

spect to λ.

It is noted that the optimization criterion in (8)

minimizes two objective functions at the same time.

The former one is the frequency-point-wise v-gap met-

ric between Pm(λ) and P (λ) provided the associated

Nyquist winding condition wno [det (G∗
mF )] = 0 is

satisfied, which can reduce to a constraint condition on

DX
F (λ) by the following lemma (c.f. [13]).

Lemma 1 If σ̄(G̃mG)(ejω) < ρ1 �
inf
ω∈T

σ(Dm(e
jω)) holds for any ω ∈ T where

G̃m(e
jω) is the frequency response of a normalized

left graph symbol G̃m(λ) ∈ H(p+q)×q
∞ of Pm(λ), then

wno[det(G∗
mF )] = 0 is implied by the condition that

DX
F (λ) is a unit function in Hq×q

∞ .

Proof The proof process can refer to that of Lem-

ma 3.1 addressed in [13].

The latter objective function to be minimized in (8)

is the weighted worst-case derivative of FX(λ), which

can be used to guarantee some smoothness of FX(λ)
and thus can reduce an overfitting effect. This optimiza-

tion problem can be recursively solved by a two-step it-

erative procedure, in which c is selected as a function of

the maximum angular frequency gap δ̄, i.e., c = c̃(δ̄)r

with c̃ ∈ (0,∞) and r ∈ (0.5, 1)[13–14].

3.1 Error quantification
The related worst-case error for the nominal system

model P̂ (λ) � N̂X
F (λ)(D̂

X
F (λ))

−1 optimized from (8)

is defined as follows:

ewc

(
β, ε, n, p, q, δ̄, c̃, r, h

)
�

sup
G0(λ)∈SM(β)

(ny,nu)∈SN1 (ε,ρ0)
⋂

SN2 (ρ1,ρ2)

δv(P0, P̂ ), (11)
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where h is an upper bound for the L∞-norm of Q̂F(λ)

whose pointwise frequency response Q̂ωi

F can be opti-

mized from (8), SN2
(ρ1, ρ2) is a complementary noise

set to ensure the existence of δv(P0, P̂ ). The definition

of this noise set and the quantification of h will be ad-

dressed in Section 4.

In order to determine a worst-case error upper

bound for ewc, the following lemma should be first in-

troduced.

Lemma 2 According to Assumption 1, the fol-

lowing frequency-domain perturbed NRGS model set

holds

Gm(e
jω) = G0(e

jω) +Δ(ejω), sup
ω∈T

σ̄
(
Δ(ejω)

)
� α,

(12)

where Δ(ejω) = [ΔT
n (e

jω) ΔT
d (e

jω)]
T

is the pertur-

bation to G0(e
jω) due to the disturbing noises (ny, nu)

and α �
√
2− 2

√
1− ε2.

Proof The proof for this lemma can make refer-

ence to [13].

On the basis of Lemma 2, the following theorem

can be further derived.

Theorem 1 For the a priori information (ny,
nu) ∈ SN1

(ε, ρ0) as well as G0(λ) ∈ SM(β) and

the a posteriori frequency response information Gωi
m

in (12) generated from SD(W), there exists an (n −
1)th order polynomial matrix F̄ (λ) = [

(
N̄F(λ)

)T(
D̄F(λ)

)T
]T ∈ H(p+q)×q

∞ such that for any ωi ∈ W⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ̄(Gm(e
jωi)− F̄ (ejωi)) �√

q(p+ q)(α+
β

n
+

βδ

4
),

‖ ˙̄F‖∞ <
√
q(p+ q)(β +

2β

nδ
),

(13)

where each of entries in N̄F(λ) and D̄F(λ) is s-

panned by {1, λ, · · · , λn−1} and δ can be determined

as 2
√
δ̄/n.

Proof From the frequency-domain perturbed

model given in Lemma 2, it is known that for any

ωi ∈ W , the following pointwise frequency response

equation holds

G(kl)
m (ejωi) = G

(kl)
0 (ejωi) +Δ(kl)(ejωi),

|Δ(kl)(ejωi)| � α, (14)

where Y (kl)(ejωi) denotes the entry of Y (ejωi) at the

kth row and lth column with k ∈ K � {1, 2, · · · , p +
q} and l ∈ L � {1, 2, · · · , q}. Also note from the

definition of the model set SM(β) in (5) that

‖Ġ(kl)
0 ‖∞ � β, k ∈ K, l ∈ L (15)

with Ġ
(kl)
0 representing the first order derivative of the

(k, l) entry in G0(λ) with respect to λ. In terms of (14)

and (15), there exist q(p+q) (n−1)th order polynomi-

als F̄ (kl)(λ), k = 1, 2, · · · , p+ q and l = 1, 2, · · · , q
such that⎧⎪⎨
⎪⎩
∣∣G(kl)

m (ejωi)− F̄ (kl)(ejωi)
∣∣ � α+

β

n
+

βδ

4
,

‖ ˙̄F (kl)‖∞ < β +
2β

nδ
,

(16)

where F̄ (kl)(λ) is spanned by the standard orthonormal

basis {1, λ, · · · , λn−1} and δ = 2
√
δ̄/n[13]. Note that

for any (p+q)×q-dimensional complex matrix X(ejω),
one has that[17]

σ̄
(
X(ejω)

)
�

√
q(p+ q)max

k∈K
l∈L

|X(kl)(ejω)|, ∀ω ∈ T .

(17)

According to (16) and (17), the associated conclusion

of this theorem can be derived.

During the quantification of the worst-case error

ewc, the coprimeness between N̄F(λ) and D̄F(λ) is al-

so needed to be satisfied and this condition can resort to

the following lemma.

Lemma 3 If the following inequality holds

n >
β

ρ1
q

− α
, (18)

then N̄F(λ) and D̄F(λ) are coprime.

Proof Taking the limit of δ̄ → 0 to the first in-

equality in (13) gives rise to

σ̄
(
Dm(e

jω)− D̄F(e
jω)

)
� q(α+

β

n
), ∀ω ∈ T .

(19)

If the right hand side of the above inequality is further

strictly less than ρ1 for any ω ∈ T , i.e.,

q(α+
β

n
) < ρ1, (20)

then wno
[
det

(
D̄F

)]
= wno [det (Dm)] can be de-

rived according to fact in [18]. Since Dm(e
jω) for ω ∈

T can be similarly constructed in terms of (9) and thus

is a real-value matrix, wno [det (Dm)] = 0 can be read-

ily obtained. As a result, one has wno
[
det

(
D̄F

)]
= 0.

Further note that D̄F(λ) belongs to Hq×q
∞ , it can be

concluded that D̄−1
F (λ) also belongs to Hq×q

∞ and thus

the coprimeness between N̄F(λ) and D̄F(λ) is ensured.

Therefore, the constraint condition in this lemma is di-

rectly derived from (20).

Besides, the existence of δv(Pm, N̄FD̄
−1
F ) is also

needed. Since D̄F(λ) is a unit function in Hp×p
∞ under

the condition (20), a sufficient condition for the exis-

tence of δv(Pm, N̄FD̄
−1
F ) can be given as follows ac-

cording to Lemma 1

σ̄(G̃mḠ)(ejω) < ρ1, ∀ω ∈ T , (21)

where Ḡ(λ) is a NRGS of N̄F(λ)D̄
−1
F (λ). This con-

straint condition can be ensured as long as a sufficient-
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ly large n is taken. In this case, the following point-

wise chordal distance at any ωi ∈ W can be bounded

(c.f. [13])

κ(Pm, N̄FD̄
−1
F )(ejωi) =

σ̄(Gm − F̄ Q̄F)(e
jωi) �

σ̄(Gm − F̄ )(ejωi) �√
q(p+ q)(α+

β

n
+

βδ

4
), (22)

where Q̄F(e
jωi) = [(F̄ ∗F̄ )(ejωi)]−1(F̄ ∗Gm)(e

jωi).

In order to quantify the worst-case error ewc, we

start from bounding the minimization objective func-

tion in (8). Suppose that the possible optimal solutions

are X̂ and Q̂ωi

F and the corresponding optimal objective

function value is γopt. As a consequence, one has that

γopt = max{max
ωi∈W

{σ̄(Gωi
m − F ωi

X̂
Q̂ωi

F )},

c̃
(
δ̄
)r ‖ḞX̂‖∞} (23)

whose upper bound can be determined as

γopt < γb �

max{
√
q(p+ q)(α+

β

n
+

β

2

√
δ̄

n
),

√
q(p+ q)c̃(δ̄)r(β +

β√
δ̄n

)}, (24)

which results from Theorem 1 and (22).

According to the similar derivation process in [13],

for any ω∗ ∈ T , the chordal distance between P0(e
jω)

and P̂ (ejω) can be quantified as

κ(P0, P̂ )(ejω
∗
) <

‖Ġ0‖∞
δ̄

2
+ σ̄(G0(e

jωi)−Gm(e
jωi))+

γb + ‖ḞX̂‖∞
δ̄h

2
. (25)

According to (5)(12) and (13), the upper bound for the

worst-case error ewc can be eventually determined as

ewc < α+ γb +
δ̄β

2
[1+

h
√
q(p+ q)(1 +

1√
δ̄n

)] � τ. (26)

Remark 1 In order to further reduce the conserva-

tiveness of the resulting worst-case error bound, we employ the

second inequality in (13) instead of (24), which is used as an

inequality for the quantification of the worst-case error in [13].

3.2 Convergent theorem
With the expression of the worst-case error bound

τ defined in (26), the following robust convergent the-

orem for the optimization algorithm resulting from (8)

can be obtained.

Theorem 2 If X̂ and Q̂ωi

F are the optimal so-

lutions of (8) via the two-step iterative procedure in

[13–14] provided that the Nyquist winding condition

wno [det (G∗
mF )] = 0 as well as the constraints (18)

and (21) holds, then one has

lim
δ̄→0

lim
ε→0

ewc

(
β, ε, n, p, q, δ̄, c̃, r, h

)
<

e1 (β, n, p, q) =
β

n

√
q(p+ q) (27)

and

lim
n→∞

lim
ε→0

ewc

(
β, ε, n, p, q, δ̄, c̃, r, h

)
<

e2
(
β, p, q, δ̄, c̃, r, h

)
=

δ̄β

2
+ β

√
q(p+ q)[c̃

(
δ̄
)r

+
δ̄h

2
] (28)

with

lim
n→∞

e1 (β, n, p, q) = 0,

lim
δ̄→0

e2
(
β, p, q, δ̄, c̃, r, h

)
= 0.

Proof This theorem can be directly derived from

(26) by taking the corresponding limits into considera-

tion.

From this theorem, it can be concluded that the opti-

mization algorithm from (8) is robust convergent under

some specified conditions and thus can be applicable to

the worst-case identification of the MIMO EIV models.

4 Algorithm implementation
This section will address the implementation issues

for the optimization algorithm originating from (8).

4.1 Constraint consideration
For an application of the optimization criterion

in (8), the coprimeness between NX
F (λ) and DX

F (λ)
should be ensured in advance, whose sufficient condi-

tion can be stated as

n >
β

ρ1
q

− α
, (29)

which is the same as (18) in Lemma 3 and thus can be

derived similarly. Under the above condition, DX
F (λ) is

definitely a unit function in Hq×q
∞ . In addition, the asso-

ciated Nyquist winding condition wno[det(G∗
mF )] = 0

for the former objective function in (8) should be also

satisfied. According to Lemma 1, this condition can be

guaranteed provided DX
F (λ) is a unit function. Fortu-

nately, the latter condition can also be ensured by (29)

and thus it is necessary to satisfy the following precon-

dition

σ̄(G̃mG)(ejω) < ρ1, ∀ω ∈ T , (30)

which is given by Lemma 1. The quantity in the left

hand side of (30) is equal to the former objective func-

tion in (8) when both are evaluated at ωi ∈ W and thus

it is conveniently constrained in the associated algori-

thm implementation.

In a matter of fact, in the quantification of the worst-
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case error using the v-gap metric, the following suffi-

cient conditions should be satisfied, i.e.,

δv(Pm, P̂ ) < ρ1, (31)

δv(P̂ , P0) < τ < inf
ω∈T

σ(D̂(ejω)) � ρ2, (32)

where D̂(ejω) is the frequency response of the denomi-

nator factor of a NRGS of P̂ (λ). While (31) is implied

by Lemma 1, (32) is used to ensure the applicability of

the worst-case error bound τ . These two constraints are

related to the noises (ny, nu) and thus the complemen-

tary noise set in (11) is defined as

SN2
(ρ1, ρ2) � {(ny, nu) : δv(Pm, P̂ ) < ρ1

and δv(P̂ , P0) < τ < ρ2}. (33)

In addition, the upper bound h for ‖QF‖∞ should be

known, which can be bounded in the following way.

One first obtains that

σ̄[Q̂F(e
jω)] =

σ̄{[(F ∗
X̂
FX̂)(e

jω)]−1(F ∗
X̂
Gm)(e

jω)} �
σ̄[FX̂(e

jω)]

2σ[FX̂(e
jω)]

. (34)

By taking a super operation to the above inequality for

ω ∈ T , h can be determined as

h � sup
ω∈T

σ̄[FX̂(e
jω)]

2σ[FX̂(e
jω)]

. (35)

It should be noted that the optimization of (8) can

be recursively solved by two interactively iterated min-

imization problems as in [13–14]. However, the com-

putation of c‖ḞX‖∞ < γ in the MIMO case has a little

difference from that in the SISO case. In the former

case, we should manage to make a state-space realiza-

tion {A,B,C,D} for ḞX be minimal and thus the re-

sulting computational efficiency will be inevitably im-

proved to some extent. Meanwhile, we should also

make the parameters to be optimized exist in C and D
so that such realization can form a linear matrix inequal-

ity constraint.

4.2 Identification steps
The identification procedure for identification of a

MIMO EIV model can be summarized as follows.

Step 1 Determine the a priori model set SM(β)
and the a priori noise set SN1

(ε) by various pre-

experiments.

Step 2 Generate Gωi
m , ωi ∈ W using the

frequency-domain data SD(W) from identification ex-

periments according to (9).

Step 3 Parameterize FX(λ) in terms of (10).

Step 4 Obtain P̂ (λ) via the optimization of the

minimization problem (8).

Step 5 Quantify a worst-case error bound τ for

P̂ (λ) in accordance with (26).

Remark 2 The identified nominal system model

P̂ (λ) and the quantified worst-case error bound τ are able to

characterize a robust control-oriented model set, which paves

the way for the robust controller design using H∞ loop-shaping

synthesis methods via v-gap metric [15].

5 Simulation
The MIMO EIV model identification procedure is

verified on the following double-input and single-output

system

P0(λ) =

⎡
⎢⎣ λ+

1

9

λ+
9

2

λ+
1

8
λ+ 8

⎤
⎥⎦ , (36)

whose frequency responses are corrupted by the cor-

responding zero-mean Gaussian white noises with the

following sampling angular frequency dependent vari-

ances ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
1(ωi) =

ejωi +
1

9

ejωi +
9

2

,

σ2
2(ωi) =

ejωi +
1

8
ejωi + 8

,

ωi ∈ W , (37)

which derive from (36) in a straightforward manner.

In the above simulation environment, ρ0 and β can

be determined as 0.9622 and 0.3755, respectively. The

a priori noise bound can be calculated as ε = 0.0718,

which is less than ρ0. The corrupted frequency respons-

es with the data length N = 40 are uniformly collected

from the sampling frequency interval [0.001, π−0.001]
and thus δ̄ can be computed as 0.0805. ρ1 is approx-

imated as min
ωi∈W

Dm(e
jωi) = 0.9477. In the model

parametrization in (10), n = 4 is selected such that (29)

is satisfied. During the optimization of (8), the choice

for c is made as

c̃ = 1, r = 0.8. (38)

After the implementation of the proposed identifi-

cation procedure, the optimal parameters for the numer-

ator and denominator factors are

XN =

[0.0030, 0.2112,−0.0365,−0.0015,

0.0226, 0.1099,−0.0196, 0.0100],

XD(1, :) =

[0.9750, 0.0041, 0.0020, 0.0010,

− 0.0205, 0.0024,−0.0019,−0.0124],

XD(2, :) =

[0.0005, 0.0000,−0.0000, 0.0004,

0.9938,−0.0002, 0.0008,−0.0010],

where XD(l, :) means all the elements in the lth row.

Meanwhile, the corresponding optimal value is ob-
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tained as 0.0736. The identified transfer functions in

P0(λ) are compared with their respective true models

in Figs.2 and 3, respectively. We can also compute the

worst-case error bound as τ = 0.6615 accordingly.

Therefore, the identified nominal system model P̂ (λ)
and τ characterize a model set which contains the true

system P0(λ) and this model set paves the way for its

later robust controller synthesis.

Fig. 2 Identification of the 1st transfer function in P0(λ)

Fig. 3 Identification of the 2nd transfer function in P0(λ)

It can be shown from these two figures that the re-

sulting identification results are satisfactory and the ef-

fectiveness of the proposed method has thus been veri-

fied.

6 Conclusion
A frequency-domain worst-case identification

method for MIMO EIV models is proposed in this pa-

per to cater for the robust control design. This iden-

tification method is an extension to that for the SISO

case. The relevant identification framework for the MI-

MO EIV models is clarified and then the corresponding

identification algorithm is addressed for the estimation

of a nominal system model. We put an emphasis on the

quantification of a worst-case error for the estimated

nominal system model and a proof of the robust conver-

gent theorem for the proposed algorithm. A simulation

example is given to show the effectiveness of the pro-

posed identification method.
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[2] LJUNG L, SÖDERSTRÖM T. Theory and Practice of Recursive
Identification [M]. London: the MIT Press, 1983.
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