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Abstract: In this paper, a modelling technique, GMDH-PISV (Group Method of Data Handling
with the Principal- Component Two- way Selecting Variables ) algonthm, is presented, in . which
gelecting variables is based on the data taken from the system but not on the relative matrix constructed
according to one’ knowledge and experience. The model aocuracy obtamed using GMDH—P’I’SV is
compated with that obtained using other three algonthms through sunulation. At last, the GMDH—
PTISV algorithm is applied to modelling for fermcntatlon processes. -
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i Introduction ‘

self-organizing nonlinear mapping algonthm ’ known as the Group Method of Data Handlmg
(GMDH), was introduced by A. G. Ivakhnenko in 1968011, It is considered to e a new ideat?]
for the identification of many complex systems (nonlinear, multivariate ) Wthh are relatlvely
known little, such as economical, social and environmental s’yst'emé‘.’ Up ‘to now, the GMDH
algorithm has had some improved forms and applications of these algorithms have shown that the
GMDH algorithm are effective for modelling and prediction for complex systems for ékémple
Duffy et. alf3],

On the basis of GMDH and ISM (Interpretive Structural M'odel'ling)", Minoru Ryobe, et. al.
presented Group Method of Structural Modelling (GMSM)!M). In the algorithm , one has to know
2 technological process as much as possible to construct a relative matrix for selecting input

" variables, Tn fact, the matrix is: usually inaccurate because of.the differences .in one’ s
knowledge ; besides, it is very difficult to express exactly the dependence between variables by
0-1 matrix. Consequently, considerable “man-made disturbance” is led to the modelling when
cither GMSM or its improved forms are applied. Moreover, the relative matrix usually has to be
Modified again and again in computation. '

S,

s,

* The subject subeidized by the National Natural Science Foundation of P. R. China.
Manuscript received Nov. 14, 1990, revised June 22, 1991,




350 CONTROL THEORY AND APPLICATICS

According to the principle that the essence of a system is implicated in and only in itg da
we present a modelling technique, Group Method of Data Handling with the Principal—camp()n fl’t
Two-way Selecting Vanables (GMDH-PTSV) algorithm. In the algorithm, selection of Varigy |
is based on the data. The variables and the dependence between them are decreased by the PTSV .
Therefore, the accuracy of model and the stability of computation are g;eatly improved, :

In this paper, these are discussed; GMDH-PTSV algorithm, simulation of the algorithm ang
its application to modelling of the fermentation processes.
2 The Algorithm of GMDH with the Principal- Component Two- Way Selectm 3~ ;3

Variables for Modelling '
2.1 Analysis and Determination of Principal Component

The principal component approach is a technique used in multivariate analysis for reducmg
the dimension of the observable vector variables(®l,

Let X=(x,235°* ,2,)" be a random vector with

E(X) = g, cov(X) = 8 = (s,

where u is a real m-vector and § (of order m X m) is a real positive semidefinite matrix.

Assume that v;(z==1 2, *es,m) is a eigenvalue of § and the eigenvector of 8 chesponciing
to v;is d;(1=1,2,- m) Obviously it may true that
22 vz 22+ 22 v 2> 0 and dfd; = 1.
From [5], the following definition is given.

Definition The normallzed linear function dyX == Zd,,,x,, where d, is the normalized
$=1

eigenvector of § corresponding to its K" largest eigenvalue v, is called the K® principal - |

COmponent of X.
For avoiding the problem of units used in the analysis we shall use in practice the sampl
correlation matrix instead pf the sample covariance matrix to estimate the principal component..
Lt ; , , » ,

y = f(X),

where X==(z;, s+, #,)T is the random input variables vector, and y is the output variable.

- The' data from the observation are
Zixn Tiz vt T Yy

T2 Tzg - o0 Tom | Y2

Tar  Taz " Ty Ya

The sample correlated matrix of X is

R = R(X) =
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7i; = (T, 25) = T - ,_'_.—-; , ‘ : 2.1
1 » . ~ g o :
8 = mg (2 — %) ({c;, — &) s , | 2.2
ij == E(x]) '= %—217”’ z’] = 1’2,"' Y /(D ) . ' (2. 3)
=1 ,

Taking note of that the matrix R is real symmetric and positive semidifinite, we have the
floWins thearems, o . AT

Theorem 1 For the correlative matrix R (of order mXm), with eigenvalues v; v, 222>

> 0, it has m mutually orthogonal unit eigenvectors.ay, gz, ***, an, with
Ra; = vy, (J= 1,2, ,m),
| ARA=7V.

Where 4 is the orthogonal matrix with colums a;, a3, **+, @, and Ve==diag(vy, v2s ***» V).

The proof can be obtained from any textbook on matrix theory.

Making a canonical transformation, we let

:’i:‘ﬂ"‘"‘_L’ J= 1,200 ,m, - (2. 4)

where

Sy = T;;‘:%_"B'E p — P
Thus we have the following theorem. oL .
Theorem 2 For the vector X with z samples, there exists an orthogonal transformatxon e
— AR, , i i ol i, 6)
such that cov(Z)-— (n—1)V; where X= (1, 23, *»* 2)T, Z==(z1, Zzy ey za)Tand V i a
diagonal matrix with diagonal elements vy 22 vy 2>+ 220,220, the ordered exgenvalues of the
correlation matrix B. The i column a; of A satisfies (B—vl)a;=0. The components of Z are

Uncorrelated and % has maximum variance among alt normahzed linear combmatxons uncorrelated-
wlth 21, 22’ vee Z‘ 1‘ L . ” . : .
Proof

. cov(Z) = 227 = ATXX"4,
Let : -
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then

N . Ty — i,' x;‘j — Ej . :
G = By == .
’ E . g‘?’ ; €. ()
Thus from (2. 1) and (2. 2) we have

=== (s — 1),

~ 8i8jj . 8)
So that Q= (a—1)R,
cov(Z) = (n.— 1)ATRA .
Since A is the orthogonal matrix whose * column is the eigenvector corresponding ¢, the
eigenvalue »; of the matrix R, we obtain from theorem 1
v 0
cov(Z) = (n — 1) T | =a-r, R
0. U
that is
(. — Dy, (=),

Y =12, ,m (2.10
0, G, )

cov(z,z) = {

The proof is complete.
From Theorem 2 we can conclude that corresponding to the eigenvalue v; (v, >v, 2200 2y, >
0), 7 is the ¢ principal component of X,

>
The estimate of the total system variance is may given by Zv.- and is called the total sample
$==1

variance. The importance of the it principal component is measured by

w/( ) .

i=1

which, when expressed in percentage, will be called the percehtage of contribution of the i
principal component to the total variance. .

If the first P principal components contain a large amount of total information of the vector E
X, they may be used in further investigation in place of the original vector X. So the dimension
of the problem is considerably reduced. However, because the principal components are the linear
combinations of X, the variables bin a final model can not be reduced. For this reason it is natural
to look for methods for selecting the principal variables among the original ones.
2.2 The Algorithm of the Principal-Component Two-Way Selecting Variables (PTSV)

For the selection of a “good” subset of variables » the properties of the principal components
should be investigated.

From Theorem 2 it follows that

"
Z == (l}‘X == E a,,,»:?:k.
k=]

Obviously, weight @ IS 2 measure of the importance to be palced on the component 2, in the




ol = max{Jaul )

g of the & principal component z; is nearly equated to the eliminating of the. ¢ original

i oritd ‘
;:;e g, Whichs in this paper , is called the first principal variable of the ¢ pril”lcipalycompoqent

n the algorithm of backward selection of variables based on the principal component(s], the

'abie eliminated is the first principal variable of the least component. As a matter of fact , the

yatt » ;
o the 10 of the information of the variables is too much.

able 5 sometimes the same as the first principal variable of the largest component and in this

In order to overcome the shortcoming of the algorithm we modify it as PTSV in which the
Jariables omitted are selected on the basis of the investigatingb the ﬁrst two principal variables of
e {argest component and the same variables of the least component respectively. We’ll briefly
discuss it here. v

Let the first and the second principal variables of the largest component be respectively X3
with weight ai and X® with weight af and the same of the least component be respectively XV
with weight af? and X{? with weight af®, Further, we define

b= [aP/oP| and b = |af?/afd]. @
Then the variables eliminated should be selected in the following principles. |
a) If X is not the same as X{V the variable omitted should be X,
b) If X§ is the same as XV several situations are to be considered.
1° ,220. 8 and b,<<0. 8.

This indicates that the weights of X and X{? are nearly equal in the least principal
component and conversely X,S.")‘ is much more impdrtant than X in the first principal
component. Therefore the variable dropped should be X{?. :

2° 5,>>0. 8 and 5,>>0. 8. '
Based on the similar reason X{V is eliminated.

3° 5;<<0. 8 and b,>0. 8. L
The variable eliminated should also be X{V.

4° b,<<0. 8 and b,<:0. 8.
In this case X{ should be omitted if b;/b,>>5, and otherwise X{V is opitted.’

that the information loss of the variables should be as little as possible in the elimina

“Thé'reason is

that X< and X{ are all very important in the prineipal components of therselves ‘X shouid be

omitted only when the importance of X{? in the least component is much’ greater than that of X

in the largest component. - : - st el R LA
In summary we can obtain the principle of eliminating variables,” I o0

(b; >> 0. 8 and b, << 0. 8) or (by<C 0. 8 and bifba > BY e (212)

the variable eliminated should be X{». Otherwise X js dropped. Cgwnlpaenn T SR i

The selection. process should stop when the loss of information® exceeds a’certain-value:: In
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order to avoid lossing too much information the calculation of the loss [6] is revised ag
J = PDEC() + l‘DEC(k - 1) + e - l"DEC(O),

(2.
: " 13) ,
where DEC (k)-—vm‘/ ( Ev,) is the percentage of contribution of the least component afte, th

i =)

. K“‘ vanable eliminated has been selected and I( 0<{l<C1) is the weight efﬁcwnt designateq.
N Summarlzmg the above we can give in Fig. 1 an abbrevmted flowchart of the algonth
PTSV. .

Input data
I
[ compute R from formuias(2. 1) — (2. 3) ‘,
' compute eigenvalues and eigenvectors I
L compare the eigenvalyes j
o [ determine  X®, X®, XfVand pety ]
L compute b; and b, from formula(2. 11) 1 dropping z{V

] ’
L - selecting variables based on the principle of PTSV l

=

( compute J from formula(2. 13) I

L Output results !

Fig. l Flowchart of PTSV algorithm

: , 2. 3 The Algonthm of the GMDH with the Principal- -Component Two-Way Selecting Variables
(GMDH~PTSV) for Modelling '

The algorithm of the GMDH-PTSV may be considered as a special combination of the
improved ' GMDH algorithm, the GMDH with Initial Varialble Keeping algorithm (GMDH-
» ‘IVK.)UJ,Wlth the algorithm of the PTSV. The selection of the input variables using the RTSV i ’,
based on the data taken from the system to be identified instead of the knowledge about the o
’ 'system. Moreover,the variables kept in each layer of GMDH-IVK are selected using the pTSv
but not only accordmg to the sequence of the error on the test set data. In order to obtain bettef

convergence one to-three variables are selected based on the minimum error and entered the next :
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directly. So the dependences among the input variables in each layer of the GMDI

- op-layet
¢} of eased and as such the algorithm has better computation stability and model accuracy. The
#° dee ok of GMDH-PTSV is shown in Fig. 2 where 8,G,C and R express yespectively selector for

5 petwung variables , basic-GMDH network , comparer for ordering partial polynormals ‘with respect
o

. " smaﬂeSt MSE (mean-square error) and recorder for keeping initial variables.
‘wt 4 o . L

Testing set

Training set

!

Input variables

Ist layer 2nd layer 3rd layer final layer. . ..,

Fig. 2 Abbreviated network of PISV—~GMDH

3 Simulation Study of the GMDH- PTSV Algorithm

Three GMDH algorithms, Basic- GMDH, GMDH-IVK and GMDH- PTSV are used to
modelling for three simulation examples which are respectively

1) y1=2+uy+ug+ 2uquy—uf+sin (uzued.

2) y2=0. 3+u-Fug-+ 20— uf o+l

3) ya=2-+u;+ e+ 2uyup—ud+ui-+-ugus.

- 30 measurements of input variables are generated by random functxon of Great Wall 0520(* H

computer and the data are separated into two sets, the “trammgkset,’? w,\th 20 measurement times

and the “testing set” with 10, Sum of square ertor of the testing set data is

Rssi= > [3® — s ®F, G=1,2,%),

1€ {T,} ;
where {7,) is the set of times in the testmg set and §;(t) is the estimate of y,(t) For showing

cOnvemently the computation, we define
V(w,z) = (1 wz w? 2 wz)"

and Gip = (go g1 92 93 94 9507

Because of limitation of space, we give only the data used in example 1 m Table 1, the
°°eff1c1ents vector of example 1 using GMDH-PTSV algorithm in Tavle 2 and the results of Rss
for ayy examples in Table 3. The estimate of y; is expressed in the coefficients vector here

o= CLV (s 12005 ¥z = OBV (gnos 1) s ¥ = OBV (g1 910+ |
= GV oy w) s gip = G0V (uys wg) s yu = GLYV (up, ug).
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Table 1 Data used in simulation example |
1 up us y 0 T
1.100712E-02 0. 4984514 0. 9502588 0.7933141 3.10898g T~
0. 6762106 0. 701513 0. 8037676 0.915644 4. 535667
0. 8700599 0. 5386053 0. 9545389 0. 3951538 4.68297
0. 9413699 0. 0130919 0. 4658356 6. 872218E-02 3. 432582
0. 5095435 0. 257972 0. 9415805 9. 235416E-02 3. 671293
0. 991137 0. 9796342 0. 1952339 0.9817234 4. 988774
0. 1841499 0. 8338841 0. 3443373 0. 4926043 2. 539564
0. 8054391 0. 6613618 0. 7995875 0. 3138043 4. 435052
0. 9076961 0. 2834849 0. 1113796 0. 808787 3. 680624
0. 1178653 0. 8692248 0.7991675 0. 4338387 2.734613
0. 9629044 0. 7468883 0. 8458033 0. 2433331 4. 869973
0. 1667961 0. 8294881 0. 526898 0. 378211 2. 590955
0. 4024711 6. 600546E-02 2. 187459E-02 0. 3148507 2. 4939
8. 189295E-02 0. 2000422 0. 0325452 0. 9976216 2. 30543
0. 5743653 0.1734918 0. 8299087 0. 5344253 3. 666056
0. 3934828 0. 413344 1. 873849E-02 0. 1373083 2.623381
0. 7834805 0. 1546669 0. 9905094 0. 6699325 4. 095856
0. 1797593 0. 1644999 0. 4235958 7.866711E-02 Z. 548047
0.7366418 0. 9359299 0. 7713543 0. 9534967 4. 789506
0. 1592663 0. 3447531 0. 4796381 0. 0243849 2.638272
0. 5237618 0.2123873 8. 712356E-02 0. 6410765 2. 923994
0. 2651788 7. 457916E-02 0. 9426256 0.7717748 3.299323
0. 2464716 0. 667427 0. 8407791 0. 9886303 3. 583785
7. 520019E-02 0. 8491488 0. 2332966 9. 747193E-03 1.723432
0. 5894254 0. 2588048 0. 1707713 0. 6394001 3. 163034
0. 1881254 0. 6437961 0. 4725236 0. 3991221 2. 742539
4. 906027E-02 0. 4854909 0. 6270657 0. 8966162 2. 909749
0. 6858248% 0. 2694724 0. 2040152 0. 3322105 3. 276249
0. 3543726 0. 1956527 0. 6182844 6. 5578479 3. 181973
0. 4666672 4. 275986E-02 0. 5130912 0. 5296185 3. 040525
Table 2 Coefficents vector of example 1 using GMDH-PTSV algorithm
Gn Gre Gy G Gy &
1. 827509 1. 746397 © 3.001389 4. 937378 -~ 3. 278809 0. 210083 )
2. 278015 1. 869362 ~—2.181816 0. 4691468 1.379028 2. 388184
2. 092461 1. 356396 -0, 7390823 —2. 481049 1. 185913 ~1. 479004
—0. 8128302 0. 5574417 3. 130039 —0. 2834625 =0, 140564 —0. 2597656
—2. 087898 4 594422E-02 2. 030788 2.8274548-02 | --0. 1694908 0. 303711
1. 702858 —0. 643364 7. 228088E-02 0.7122803 0. 1428833 -3 613281?3—0&

, Besides, the example for modelling using GMSM in [4] is

’

modelled by GMDH-PTSV and
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i

: %y is
, mdtp of
;;'th o 109, 4375 -+ 15, 32813, -+ 14. 59204X, — 0.50337231X%

— 0. 486084.X% — 0. 2998047X,X,.
i of yariables can be obtained from [4]. The mean-square errors of total data by GMDH-
and GMSM are respectively 2. 344556 and 2.511073.
”P’ISV Table 3 Comparision of simulation Results

e gorithim PTSV-GMDH IVK-GMDH ~ BASIC-GMDH
/e’x’a”mg: final layer 3 2 | 2

1 | rest 6. 839304E-02 0. 164412 0. 1730471
:};;I;; iinal layer 3 3 2

2 | Res2 9. 969799E-02 0. 1664206 0. 1660074
;a;;; final layer g 3 3 ' ) 3

3 | Resd 0. 4765467 0.5130102 |  0.8109914

Comparing the results of GMDH-PTSV with any one of the other 'alg&itﬁms we can
reasonably conclude that the models using the GMDH-PTSV algorithm have less order (if the
accuracy of the models are the same) , better accuracy and stability. In particular, the algorithm
can be more effectively adapted to nonlinear natures of the processes.
4 Application to Modelling the Fermentation of Cephalosporin C
The antibiotic fermentations are of very' corhplex processes with nonlinear and multivariate.
' Because of the difficuities of measuring on-line main states it is important to extract pertinent
informa"tion in terms of descriptive mathematical models for prediction and control of the
processes, inforturnately , the modelling for these processes is almost impossible by means of
mechanism analysis if more than, say, four variables are to be taken into account. Therefore s it
is effective in a sense to apply the GMDH-PTSV algorithm to modelling for the pracesses based on
the data obtained from the systems. In the following we present the results of modelling for the
fermentation of Cephalosporin C, ; | R
By the PTSV algorithm, five principal input variables are selected from twelve process
vatiables and they are pH(u), glucose concentration (uz), NH;(ug), DO (m) and temperature
(us). Cutput variables to be estlmated are CPC concentration (y1), cell mass (yz) ‘and purity
(32). As the report data from the real process are not permitted to be announced, a part of the
Tesults can be published ‘here. The stable models of y1, ¥z and ys are respectxvely b
¥y == GV (ugyua)
w GRV (21,2), Where 2z == GLV (u2,us)» 7= G'ESV(ﬁé’us) |
and ys = GGV {f1,f2), where Fir =GRV (ugsus)»  f2= GV (uy sug)+
The coefficient vectors are shown in Table 4 and comparisons between measurements and

SStimates of the outpuis ¥, ¥z and ys respectively in (2), (b) and (¢) of Fig. 3.
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Table 4 Coefficients vectors of stable models

Gy Gy Gz G Gy Gsz
7. 089138 0. 1625877 0.6906738 | —3. 220703 --1. 828125 46. 96826
—8.-270508 0.7617188 1.411053  ~10.78906 1. 359375 ~~13.96484 —232
-0, 8837588 |—0.1621094 |-—0. 2223969 18. 35156 ~{0. 2890625 0.5019379 76.5
3. 062851 4. 453125 0.1051025 | —0.99002344] —7. 080078E-02 4. 077149E-03 24 .
7. 443458E-04 5. 046875 0.1881714 }—13. 98438 5.371094E-03 —1.624376E-03 -1, 417959 .
0. 482445 -9, 3125 —1.019043 11. 42969 1. 953125E-0 5. 236817E-04 —2. 5625 ‘,
CPC(u/ml) cell mass(g/1)
200004 64
150004
100004
50004
n) ® '
0 32 64 9% 128 0 33 66 ' 99 | 132
pur. (%)
100 []+--measurement
—+=+estimate
t(h)
0 ‘ 32 ' 6'4 9’6 12'8

Fig. 3 The comparisons between measuretnents and estimates of the outputs

5 Conclusion

On the basis of the forgoing results and theoretical arguments,
conclusions could be made about the GMDH-

the following general

PTSV algorithm. 1) Both selecting variables and

modelling processes are based on the data therefore the “man-made disturbance” is decreased. 2)

The model accuracy and computation stability by the algorithm is better than that by any one of )

the other three algorithms mentioned in this paper.

wmultivariable , nonlinear,

complex systems which is relatively known little.

3) It is effective for modelling of
4) Its application to

modelling for the fermentation process of Cephalosporin C, has shown that the models are useful

and practical,




A GMDH-PTSV Algorithm and Its Application to Modelling for Fermentation Processes - 35_9 ‘

References

o, A. G.. Polynomial Theory of Complex Systems. IEEE Trans. Syst. , Man, Cybern. 1‘9,‘7‘_1,MSMCF1;354T 2

" Vakh“e“k

G. A. and Saridis, G. N.. On Identification and System Parameter Estimhﬁoﬁ. Proc. of bth IFAC symp,*wm“ “
S. A. » June, 1982, 711 : o . c
. J ut 3. and Franklin, M.. A Learning Identification Algorithm and Its Apphcatlon to an Environmenm System IEEE
3 guans. Syst. » Man, Cybern. , 1975, SMIC-5(2) 1226239 : ' ’
M. et. al.. System Analysis of A Cement Plant by the GMSM. System and Control, 1979 23(10) 3587»-593'"’.

DCU

[ 4J Ryohe,
e Japanese)
ts] Narsyanc, G- . Multivariate Statistical Inference. New York; Academic Prws, 1977

(6] v Fiyu and Xi Ying. The Selection for the Optimal Variable Subset of Regression Model Ma'hemucp in Ptactloe and:v o
Theoty, 1987, (3):22—28 (m Chinese) o B
[7] Yang Zihou, et. al. . An Irnproved GMDH Algonthm——’l’he Imtml Varmble Keepmg Alsmthm. A cta Automam Smwa, ._._.

1986, 12(4)4;379—400 (m Chinese) . ; ;

GMDH-PTSV %&EZ’(Q@E&@ h@*ﬁ‘?ﬂ'ﬂ“ ﬁ]

R I
LR B ML R « BRIE,050054)
' EHR#
(ngm% 54 BFITHT » E%};‘E 050081) i

ERE
CRUK ERHLR 300072)

. 4B T GMDHPTSY GV SR B B 80 GMDID ZBUIE, ZeHSHF, x

BRI AR TR, TR A 2R 1 (- DAIXIER. B, 3 GMDH-
PTSV S L ERGERHET T B B JYF] GMDH-PTSV ﬁi"a‘ﬁ*ﬂi’#ﬂkﬁﬁtﬁﬁﬁ"fﬁﬂ
SR B POR, ARG 20 R GMDH 0k, AL B AR LRI R A

$x#£ﬁ%

R ST 1958 424k 1982 47 %ﬁ?ﬂdhﬂ%@’%édlﬂ:»ﬁ AR 4. 1988 @*ﬂk?ﬁﬁk“#ﬁfﬁﬁé‘ﬁ% ;‘*F] -

RTE W7, B THLHL A B S R mm&%@:&m% azﬁm& Wﬁmm%ﬂﬁm&ﬁﬂ a
WO SRR RS M S R AP RS BB '

Effd . 1960 424, 1982 xs&mmmaﬂmawm b1 v 0R F‘“E?Eﬂ%ﬁ‘% 54 Ef%}mk*ﬁ‘-- .

B,

SULBCA B T BFIONB R SNATIC, LT ammmﬁ%ﬁmmﬁfamwa@%, o

. BB 1037 44k 1060 A HL FREKE TR H LT L. 7 HBUESY. mmmawma& A
SRS 3 RS TAE. I TAE A B BB R BAARIIE: xtmmc@ o

LL3 SRR M BRI L B






