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Abstract

In this paper, we generalize the original moment theorem to the
problem of existence of a linear operator with minimum norm under
some constraint conditions in an abstract normed space. The results
are applied to a class of largest controllable set and optimal control
problems for distributed parameter systems. ‘

I. introduction

The original moment problem in functional analysis was proposed
by Banach in 1932 (1). Then, Krein generalized Banach’s results to
the problem of existence of a linear functional with minimum norm
under some constraint conditions in an abstract normed space. Kras-
ovskii applied Krein’s results to the time—optimal control problem
for lumped —~ parameter systems in 1957. SubSequently, a series of
papers have appeared(21(81041I53t61C73C83

I, Generalized Moment Theorem

®

We consider. the following generalized moment problem; Given a
linear operator ¢ from B-space U onto B-space X, a point x€X
and a real number L>0, find a « €U satisfying

fullp<L (2,1)
such that
bu = x (2.2)

For this problem, we can prove the following basic theorem.
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Generalized moment theorem Assume that

1) ¢ is a bounded operator with domain U and range a closed
subset of X, '

2)¢*x*=OU* irnplries x"=0x" where 0x* and 0u* are the zero
elements in B-space X* and U* respectively,

Then a necessary and sufficient condition for the exjstence of a
solution to the generalized moment problem is that

(7 %y <L|¢*a*|,* (2.3)

for all ¥* €X*, where “%? denotes duality,

Proof Under assumptions Dand 2), we have the following basic
facts, ,

(i) e" is determined uniquely as a bounded linear operator with

domain X* by assumption 1) ,

(ii) the Fredholm Selection holds for ¢ by assumption 1)(13, that

is
RCd)y = (N@*) )+, (2,4)
where R(¢p) denotes the range of ¢ and
N(g*y= { x* EX*(Q):1¢p*x* = gys* } (2,5)

(N(@*)) = { xEX(Q): ¢ x, ¥y =0, x*EN(¢p*) }, (2,6)
It follows from assumption 2 ) that N(¢*) only includes the Zero
element 0x*, : ,
So according to (2,4)and (2,6), R{¢) is the whole space X,
Now, let us consider the set '
O={xEX: x=du, lullp<<L, ucU}. - (2,7)
It is easy to verify that Q is a convex set with interjor points by
assumptions and dasic fact ( ji ). Now, we want to prove that Q js
closed, _
It is only necessary to prove that ;GQ when any sequence { x, }
iz Q converges to;chX. In fact, according to the definjtion of Q,
we have u, €S, = {2€U lujly=<<L }for every X, n=1, 2, - ,such that
$u, = %, Since %> x as n=>00, 50

~ .
Pl—> X a5 p-»oo. (2.8)
Since S, is a bounded set, there exists a subsequence { U, §oin {u, }

N ‘
which converges weakly to somen €. In addition, since Sy is a closed

'
convex set, S, is weak - closed, therfore u &Sy Hence, we have
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Cug, s u*}-—-e»(’;; uty 'as:K—-—-aoo
for any u*C€ U*. Evidently

g, ¢*x*) "——9’ < u P¥x* ) as K—>o0
for rny x* &€ X*. Therefore .

(P u,.k,,x*)——>(¢z’7,x*) as Ke—>co
for auy x¥*C X*. But

Pt —-—>‘; as K—>
by (2,8). So
(%, 2%y = (u, 5%
for any x*€ X*. Hence ;=q5u and x € Q since s € Sye
Now let us couplete the proof of the theorem. We note that the

existence of a solution to the problem is equivalent to ¥ €Q. In view
of the fact that Q is a closed convex subset with interior points in

X as shown above, it follows from the separation theorem '°''!'’, a
necessary and sufficient condition forx €Q is that

. <’;, x* Y << sup {x* du) = sup {x* ou) for any x*E€X*,

pu€Q fully =L
By basic fact (i), the above formulation can'be rewritten as follows;
sup {x* ¢u) =sup Co*x¥, ud <sup  |ulgllp*x*|<
Nully=L lullos=<L [ oL
<Ll g*x+]u.

This means that (2,3 ) holds and the proof is complete.

Remark 2,1 Note that ¢ is a bounded operator with domain U,
so R(¢) is closede=>R(¢*) is closed (1J. We also know that if
there exists & real number a>0 such that |o*x*| =aljx*] vx*E X¥,
then R(¢*) is closed '!°7,

The folllowing theorem is useful in the application of the
generalized moment theorem to distributed— parametr control systems.

Theorem 1 Assume that the assumptions of the generalized moment
theorem hold. Then for any given x €X, we have:

1) there exists at least one ug CU such that ¢a9=?and _ -
luolo=1/ _ min  #*xtl 5 (2.9)
<x9 X*> =]
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2) the element #, in 1) is the solution with minimum norm. In other

words, for any # which satisfies du=x we have o lo<[ully .
Proof According to Remark 2.1, the set
S= {u‘“:qb*x"":u“‘,x*GX*} (2,10)
is closed. It is easy to verify that the set S is a nontrivial closed

subspace in reflexjve B ~space U* by assumption 2) of the generaljzed

moment theorem and the assumptions of this theorem. Therefore S
itself is a reflexive B~ space. For any given x€X, we can define a
functional # on S as follows

u(u*)=<x, x*>s d’*x*:u”! yxtex* (2.11>
since there is a one to one Correspondence between x* and z* accor-

ding to assumption 2) of the generalized moment theorem. Hence_

§l3n= sup <37€X*>,x*€X*. (2,12)
flu*fls=1

But, by the Hahn - Banach Theorem, we see that the éontinuous lig-
ear‘functional z?on the subspace S of U* can be extended to a con-
tinuous linear functional %y on U* with the same norm énd u, €U
since U is a reflexjve B ~space. In other words, we have, a) %ol =
i[;[!and b) uo(u*)& Cuy, u* 5= ;(’u*)-&( ;Z u*), u*€S. By ( 2,11)
and b) we have
gy w* ) = <;, **y, VareXs, u* s,
It follows that

Clog @% 275 =X, 2%y, { gug, 2% =(Z, 2%y, varexs

hence,

_ dupg=x (2,13)
Therefore, by (2,12) and a), we of)tain

iuoﬁ: sup (%, x*>s x* e X (2.,14)
flu*lS=1

Since the unjt sphere of a reflexive B=-space is weakly compact, we
can change “sup” jnto “max” in(2,14), and moreover, (2. 14) can

be rewritten as follows
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17l = max 2, ¢*x*) [|¢*x¥]ye = maxdx,x* /| $ra*|pn =
%k qr ¥ . x*

p*x
max fl¢*x*~* =1/  min l*x* |lux (2.15)
(¥, %¥>=1 (x,x*)=1

It follows from a), b), (2,13)and (2,15) that the conclusion 1) of

the theorem holds. To prove conclusion 2) of the theorem, we note
that for any 2€U satisfying qbuz';c' and x*EX* we have
(x 2"y = {Qu, x* ) = Luy ¢*x% ) < Jully [¢*%*u= ,

namely [ulo= (7, 2 ) [lo*x*],» , x*EX®,
So

o= _max (%, 20 /|¢*tor =1/ _min  14°w*lye = uolo.

(x,%*)=1 (x,x%) =1

Thus, the proof for the theorem is complete.
In fact, the assumed conditions of the generalized moment theor-
em can be relaxed. We have the following theorems and remarks.
Theorem 2 Assume that 1) X and U are reflexive B-space; 2)
¢ is a closed and densely defined linear operator on U and its range

is a closed subset of X} 3) ¢*x*=(y* implies x*=0x» then, for any
given ¥ €X we have
a) ‘there exists a sequence {u,} U such that ¢u,—»x weakly and

lim ful=C1/ min  [¢*2*[)&d, x*€D(S")
N=» QO < x ,xt ) =1

b) for any u which satisfies qbu:;, we have [lul] =4,

Remark 2 In addition to the assumptions of theorem 2, if R(¢*)

is dense in U* then we must have a unique solution u, satisiying

buo=x and Juoll =4-

Theorem 8 Assume that U is a reflexive B-space and ¢ is a
bounded linear operator with domain U and range a closed subset of
B-space X. Then a necessary and sufficient condition for the exis-

tence of a solution to the generalized moment problem is that
{x, x*)<Ll¢*x*|, x*€X*

for any ¥*€X*= (x* +2:2EN($*), ¥*EX*)=X*/N(¢*) — the quo-
tient space of X* on N(¢*)-
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Remark 38 Theorm 3 means that we can cuscuss the optimal con-

trol problem even when the system is not apprommately controllable
('see (3,2) below and C103).

The proofs of theorems 2, 3 and remark 2 will be given in ano-
ther paper

" Discussion of Largest Null Controllable Set

In thlS section, we shall discuss the problem of the largest null
(Cor weak null ) controllable set for a class of distributed — parameter
systems whose solutions can be expressed jn the form of

&

%) = oy %o + J Ht,)u(s)ds, 1€01,,TI, #(15) = x,, (3.1)
Yo

For any given € lt,,T], we have

~

x =x(ty) - ¢ta_tox§ - J:GH(t,s)u(s)dséqSu (3.2)
. 0 .

According to definition of the largest null controllable set [!2]
and Q the largest null ( or weak ‘null ) controllable set D*

is given
by :

" Dr=A{xei-gy g2 €0) (3.3)
Now we introduce some notation: ‘
Qo={f€X:|tl, =1} ’K(C)":;Hinf Llig*x*| «/ (x*,0 ), (3,4)

. * x”‘,=1 '

Theorem 4  Assume that the assumptions of the generalized

moment theorem hold and control COnstramt (2,1)is imposed. Then
the set

0= {x : X, <K(G /1% [0} +{0.}, where K(+) is given by (3.4)

(3.5)

Proof According to the generalized moment theorem, a necessary

and sufficient conditjon for xEQ is

(%) <L|gras e , wrexe, (3.6)
Obviously, %= 0. satisfies (3,6) , After setting C, = ;/”;H},GQB

for the case where x#0,, (3,6) can be rewritten as
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17l (L, > SLIg*w*|ys 2 EX*, namely u?nx? 'irﬁancb*x* lo*/¢x3Le > .
, : i L

(3.7)

Thus, the theorem is proved with (3,4) taken into account.
In what follows, we cousider the particular case where X and U

are H—space.
Theorem 5 Under the assumpptons of the generalized moment
theorem and that X, U are real Hilbert spaces, the largest null. Cor

weak null ) controllable set with control constraint (2,1) is given
by

D ={¥yt ~ g3, ¥C€0 }, where O= {x €X: (x ix Y <1h,u=(d¢*)"t/L%,
' (3.8)
and in the case of (3,2)

PPp*(e) = ﬁ“ﬂ(tmsm*(ta,s)(»)ds@ (3.9)
ﬂ .

Proof Obviously, by assumptions of the theorem, (¢¢*) is a

~ self —adjoint bounded linear operator on X. We see that (¢¢*) 'exists

and hence ¢¢* and (Pd*)”! are positive operators on X {113, It is
sasy to verily that

({7 x0)2=(Cax ey ) = ( L aFmuFayyis
gim%?nznﬂ“%xnz = BE, Ty (uiEEy, VZ;xEX, (3,10)
By the results in IT, a necessary and sufficient condition for ¥ cQ
is that | 2,2 )| < LI¢*x]y.But|d*xly = ((x,86%% > )F, Heﬁce a nec-
eésary and sufficient condition for % €0 is

o~ ) . i
[(xs 2 ) (%, 070% ) %, ¥€X, (3.11)
We can also prove that a necessary and sufficient condition for

(38,11) to hold is
(%, p% 3,1, S (3,12)
[n fact, we ounly need to consider the case where x3£0,, When

(3,11) holds, we can octain ( 3,12 ) by substituting ¥ =g x/ < x s,ul;>ﬁ
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into (3,11), since i is a positive operator. Conversely, when ( 3,12 )\\
holds, we can obtain (3,11) by (3,10) ., So we have (3.8)and the
theorem is proved,

V. Examples

[n this sectiom, we shal] apply the foregoing results to two spe-
cific optimal control problems.

Example 1 Consider the system described by » ‘

B =Rty 2(0,0) =2(1,0) =0, 2(£,0) = 2, (&), 92(5,00/0 1= z,(&),

C4,1)

where 0 <1 <1, 0<E< 1, Let U'=L,¢C0,1, £,00,13), The optimal
coatrol problem is to find uClU such that the corresponding solution
2, of (4,1) satifies 2,8, 1) =0, 8 2,8, 1)/t =0, and minimizes the
functional J(u) = My,

Setting 2=y, A=62/5%¢ with domain D(4) = (H%(0,13 NH'C0,1)
<L,00,13, (4,1)can be rewritten as

W= AW + By, W:(WUWZ)T:(zﬁy)T, A= (Z ﬁ)ﬂ’iz( ?)

[~identity operator. (4,2)

. A
Let us introduce a Hilbert space H=D(AZ) X L,00,1) s0 that for
W, q%GH,

. — £ L . =
(W, WHp= { A2 Wy Az’Wg>Lz Wy, 2>L2:J‘0W1§ W1§d§

[t —
+ J( Wy wod, w=(wy,w,)7,
a

‘Wz(gﬂ.‘?;’;ﬁ)ro <403)
. . 4

Operator A with domain DAY :D(A)XD(AZ) generates a strongly

continuous semi-group {T,} on H [101:"

f oo
1 .
E 2(< Wiﬂd)n > Ly COs nwi+ - < Wrzwgbrz > Lo 811 ?l?fi)‘(bn
]‘ h .
(oo

— ]
Z 20=am S Wy oy > 1y sinnwi+ { w, yPud 1y cos nmr)g,

1

/s
S W N .
W= ( ‘) s Gy =sin wné, , . (4,4)>

Wy
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herforc (4,2) has a solution of the form for wy=(z,(¢), z( ))T
w(1) =(z(e,1),5(,1))7;

e

2 )
w(t) = Tywy+ |0 Ty, Bu(o)dz, 0 S5

and w{l)=T,w, + Eﬁll‘lﬁBu(‘E)di_ (?405 )
W B

When z,€©D(4) andz, €H} (0,13, (4,5) is the sirong solution. So

the optimal control problem is eguivalent to finding the solution u,

with minimum norm of the generalized moment prodlem for

w==T1; wy = ; 71 SBulrydrsdu, (4,6
o8

We can see that U=U*, To*=T_ and B*=[0,IJ, So it can.be

readily showsn that

0 .
*=g* wt =B¥T., w= Z 20(—= 1" {wh, &y D1y sin wmt
1
(= 1) <wido >r, cos wnt) P A 4,7)
o0
lp*wr* 2 l=lg*wlo= D (n®a {wi ¢, > E, + (wided 3 =] vz
1 v :

(4,8)
Since {I}} is a stroagly continuots semigroup and by (4,8) and
Remark 2,1, we can see that the assumptons of the generalized
moment theorem hold,

Noting that w=~T,wy, w,= (29,2,)% and by (4,4), we can

verify that the minimum element wi=(wh,, wis) satisfies

2 z <“1)m+2‘n2ﬂ2< W?n:wd)n » 2z £ Z’g,ﬁbrs >f.lg

(s ]

+2 E (=10 {Whastha 222 £ 21,50, ):szflé.? (4,9)
1
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2T T 000 6+ B S (= 1™ nint Cay i S0adh =0,
1 1
-
2 T 0L bk B S (-1 <ay 60> 1000 =0,
1 1. : . \

: (4,10)
where £ is the Lagrange Multiplier_ By €4.9), (4,10), we can
obtain ’

B=-1/a, a=2 > (n*7* ¢ 2y, 6,53, + C2iydadi, ) (4,11)
1 ;o

and

' oo
us =(2/a) 2 ( nw{Zyy G dry sin nwe C2y5 $adry cos nmt )d)n’
: .

fus Gs =1/2a, (4,12)

Citing the results in (5], the unique optimal control is given by

[e/s]
uy =(ug/fus] ) =4 E ( tX {2y, Godry sin nwt
1

=~ <zy,¢.>1, cos mr ) sin rmE
and

TCuo) =l wolly =1/ [jut || =~/ 22

®

(4,13)
Remark 4,1 Now, for 2y ED(A) and 2y €H,'00,1), let us find
the largest null controllable set D*(0,1

sL) with control constrint
€(2,1), we can verify that

(e
T :
¢¢*(W*):J0 dt =
v (o]
E‘#.{ w5 . P, cos mmT gy

-1
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S (-0t (it dudzadh
1 . '
= D
oo
E <*1)“+2 <W§, ¢n>L2¢n
1 } !
oo oo r
AY =(y,,y,)" = < 2 z {Yys $udra Cus 2 z <Yy 3P AN > ,
1 1
(4,14

where u* is expressed by (4.,7), According to‘(4314 )', we can
define (pp*)~! and obtain :

Gt w
< ° T
g<§:4%1yw<$w¢>h¢” 2:40ﬂY“<§M%nﬂ¢>“
1 | - R
So
C(ee™) T, Wy
0
:EL z 8(na(~1)"" ( %1 , da >3, (cos £aE)®
1

+ ( = 1)“” < ;zsﬁbn >¢ﬁ2)d§
OO .
= 24(712::2(“1)"”(% sl (=D Wy, B ).
1
: (4,15)

Noting that w=—T,w, with (4,15) taken into account and using

the results of Theorem 5, we obtain

OO .
S (nta e, $F, + <20 0E, SL

D*(0, 1, Ly={wy={2¢ zx)T:’-l
' 1

(4.16)

This means that; If the optimal control problem is to find a control
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. minimizing some cost functional J,(u) With the control constraint
lally<<L, then for given z, and z,, it foIIOWS»-er‘mi” (4,11) and (4,.16)
that in order to have an optimal solution, L, z,, and Z, must satisfy
L=N24" This conclusion is the same as that from (4,13). But now
we obtain the result without finding ‘the optimal control with cogt
functional [uf, . o I

Example 2 Consider the system given by

Z=ztu, 2(0, 1) =2, D=0, 2(E, 0) =2, (8), 0<E<, 011,

S o o (4,17)

Let U=1,(ro, 11, L300, 13). The optimal control problem is to
iind a wuey such that the corresponding solution z, of (4,17) satisfieg
Zu(Es 1)=2,(5) and minimizes the functional J(u)= lally « 4,17 can

be rewritten as follows

7= Az + Bz, A=0°/582, D(dy=H,00, 130 H2 (o, 11, 2€D(4), B=1,

(4,18)
Operator A geﬁeratres a strongly continuous semigroup {T,} on L,00,1)
Prog,
(o]
(Tyz)(&)= Z 2e"" T g nwE| sin nay 2(y)dy
48
1

and (4,18) has a solution of the form;

2(z, z):T,zD+Jf:TMBumdf, or 2,(E)=2(8, 1)=T,z, +JET1_FBu(r)d-:,
‘ » 0 :

Hence the optimal control problem js equivalent to {incing the solu-
tion u, with minimum norm of the generalized moment problem.. In

order to satisfy the assumptions of the generalized moment. theorem
and Theorem 1, we consider the subspace V:Hé{o, 13 in L,[0, 13
and endow the norm in'V as follows .

[ele]
: vy 2 » v L . z o~
fzlly = 2 nin® (jr sin m‘yz@)dy) y 2€7V,
o . .

=g

. o,
S50 flz¥ e =

g &
(1/nm?) (} sin ﬂﬂyz*(y)dy) 3 ZFEYE
il
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€

/I’/I’j;’ we obtain

CO

* ¥ - " N ; N
Fpe EEral L e TR %o =BT LEL ~§) f o fi fo ol a2
Wt = PFe*=B*0 _2¥=T,_, 2%= E 2e™ {z*, (Ln,\z,szM Cy=sinaxg

i

. . o w2
g5z gr = (3 —e= 27" ) iz*[ix
Analogous to what we did in Example I' we can obtain
<o
. . S~ .
A e R S 4 aneg? X A
#e=(1/ab) § (nPa2e™™ 170 [1 = 2N 2y Py g as Juo) = 1/0/ 0
1

2@ x* f}»f'“’ Ly \29@}); s

- —anf g -~ %
~(i/4a)2(?"7"(1 BE7AS B D RS LG V7
1
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