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Abstract

In this paper the problem of unconditional stability for a class
of linear time-invariant large —scale discrete systems with delays
is investigated, By using the properties of M matrices, a sufficient
condition of unconditional stability for low~order discrete systems
with delays is first derived: Then, a comparison principle is pres-
ented for discrete systems with delays. Finally, a sufficient condi-
tion of unconditional stability for Jarge?—sczﬂe' systems is estab-
lished by using the aggregation technique based on vector Lyapunov
functions. A numerical example is also given fo illustrate the ap=-

plicability of the stability criterion obtained in this paper,

1

The stability problem for a class of large — scale systems described

. Introduction

by differential ~ difference equations was fruitfully studied by some
researchers {1J-- (3], with the increasing somplexify and sophistication
of engineering systems and with the rapid development of computer
techniques in our country, it will be an inevitable trend that large-
scale engineering systems are controlled by using micro - computers in

a decentralized manner. Hence, it is of practical significance to study

the stability properties of large—scale discrete systems with delays.
In this paper a sufficient condition under which the large~scale discrete
system is stably independent of delays is derived by using the aggre
gation technique based on vector Lyapunov functions. This criterion
results from festing whether a matrix with dimensions equal to the
number of subsystems is an m malrix or not. '

2, A Sufficient Condition of Unconditional Stability for
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* ‘Discrete —Delay Systems

o In the stability analysis of dynamic systems, a class of matrices
called m matrices play a very important role. Before estabiishihg"‘ché
main result of this sectxon‘ we must have a d1scu551on on some related
properties of m matrices. R o s
Definition 1 A matrix A€ R " is called an m mavtrix“'if”*(ei)' all
off — diagonal elements of A are nonp051t1ve (b) every *e‘igéhwfafhe
of A has a positive real part. ' i e '
‘Lemma 1 If A is an m matrix, then therée exists a positive
diagonal matrix D such that AD is positive dominant.diagonal.
The proof of this lemma and the deflmtlon of p051t1ve dommant
‘diagonal matmx can be found in (5], and are omitted here '
Definition 2 For an m matrix A€ R™", a class of: m‘afn‘cé‘s related fd
A is defined by B (A)={ Bc C""“I {b,,]>a,,, Ib,, | < -ai, forzaﬁy}
Lemma 2 1f | A€ R"""is an m matnxg then every matmx BG
B(A) is nonsiagular.
- Proof Since A is an m matrix, EiCCO:t'd‘iﬂg to lemma 1 thefe must ‘be
a positive diagonal matrix D such that AD is positive Tdbminéhfdiagronal,
icen diap> Ed |aii] » For every matrix BE B (A), it is not dx{fmult

1=1
jF1

to show that BD is dominant diagonal, since .

ATHEIES 2 Gl = Ed B3] -
Sj=1 i=1
‘ ;%z o jEi
We know that if a matrix is dominant diagonal, then it is ﬁonsingu.lar-
Hence, every matrix B€ B (A) is nonsingular, because of the nonsin -~
gularity of the matrix D. This completes the proof of this lemma.
Now we are in a position to give the main result of this section.
Consider the system described by N: scalar dlfference—-delay equa-
tions : : ; !
x5 (hr1) = 2 s () + Eb,,x, = m,,), k>0, z_-i to N (1)
i=1 . =1 C e o :

Where m;; is any nonnegative integer,
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Definition 3 The system (1) is said to be unconditionally asymp-
totically stable if it is asymptotically stable for any nonnegative
integer myj. . ‘

T!‘i%m’ém 1 Dfsfimf a matrix C= { ¢},

cii= ”
{{Cisanm x'natn:s;, then the system (1) is unconditionally asymptoti-
cally stable. \

@) = 1bij},where 8; is Kronecker delta symbol. (&)

Proof Taking the z transformation of system (1), we obtain the

characteristic matrix D(z)= {d;;(2) } of system (1), where d;(z) =

o s T -
#Oip= a5~ bip /2" . When jz|=1, we have

HIFTIINS

[diiay | = Hm,,“».b“/;"” *:»;/g ~ @] = §h,,l/tz

ldij(2) | - 3= bigf2 i«’;a,,aﬂb,,g/!.(;"”’ /fa”}-im}b,,é» Ciis
This implies aha( D(zy & B (C). According to lemma 2, D(z) is now:
singular when | ”/“‘1 This implies the fact that all the poles of system

(1) lie inside the unit circle of the complex plane. That is, system

Pl B {Hn‘ - in% = O

i

(1) is unconditionally aSympfiotically stable. Q. E. D.
3, A Comparison Theorem :
Consider the following vector difference~delay inequality ,
Va+D=ATVU + ATV h-7)+ - +AV(~7) (3
where v; is a nonnegative integer and satisfies T;"ff'fé.-,g:bs is some finite
positive integer, V& R¥, A; < RV,
l.et the comparison system of (3) be

W1y = A WGk + AW U= 1)+ + AW - 1) W
For difference - delay cquation (4), W(k) is called the instantaneous
state of (4), the complete state of (4) is a finite point set with 7.+1
elements in RV definedn by W(0)y=WE—-6)y, 6¢T=1{0,1,2, e Ty b ;
Hence, the initial condition of (4) musi be a point set W,(8), 6¢€ T.
Thef'aboye discussion is also true for the inequality (8).
Let the initial conditions of (3) and (4) be V,(6) and W,(8), & T
respectively. Then we can give the comparison theorem as follows:
Theorem 2 If Vo (8)=W,(6), 6C T, and for i=0,1,2 s Aiis &
nounegative matrix, then for all k>0, the soluticns of (3) and
satisfy the inequality V,(8)<<W.(8), 6 T. ‘
Proof  We prove it by using induction. ‘:\imikmy that A; is a non
negative matrix for all i=0,1, s and that ¥ ﬂ(ﬁ) W (6), 8¢ ‘*“’

can prove the inequality V(EI=W)y for 1=5k=s.+1 tm’ngh »5‘*3
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NoW 2

8%

K?‘/

steps of xtmatxoxz
V1) <<AVC0) + A, V(wm)+n +A V(=1
‘f:AQW(O)-&AlW(ert)+~-~+AW<-r)MW(D ,
V(D<A V) +A VA -7 )+ + AV~
AW AT A=)+ A W(1~r) W(Z)

suppose that V(=W (k) is true for n—7,~1<k=n-1, where n is an
acbitrary natural pumber, then through ¥,+1 ‘steps of iteration. as
above we can prove that the inéquality V) =Wk is true for
a<k<t,+n Thus the proof of this theorem is completed.

4, A Sufficient Condition of Unconditional Stabﬂuty for Laa'gem-
Scale Systems ‘ . '

Con51der the foliowmv largs - scale syshm «;amposed of N subsys:

. tems *

N N

X(g"yl)“AuX (k) -+ EA”__ (k) 4 EB”X(IC ;gl”)' t"‘l ‘5'0 R (5)
i=1 TR 1= SRR B s -
2 :

where X; € R™, X = (X5, X3, XFI E€R" are ih,e instantaneous state of

ar : . N

the ith subsysfem (nd ihv whole system respecthﬂy and- Zzz,-«m
o R ; i=1

ij is any nonnegative integer, A;; and By; are real constant matrices

ith compatible dimensions. EEIRSERL IS e O

Conmder the i th isolated subsystem of the system (a)

k X(k-&»l)-—A;;X(ic}» i=1 to N : ‘ (&)
uppose that for all i=1 tc N, the n; eigenvalues of Ay lie inside the
nit circle of the complex plane, i. e., all N isolated subsystems are
TSymthtic:‘a,ll‘y{ stable. Then, for any gi’veﬁ symmetric positive definite
atrix G; there always fsxists unique symnﬁetric positive definite

Matrix H; such that
A};HsAss“H;; -G ’ - (D

 Let V.-(k)'~XT (k)H X((k) ‘be the Lyapunov function for the»i‘ th

|
|
|

Solated suhsystem. From (8) and (7), it is eaz,s}’ ta show the following
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two inequalities , - SEERE SRINNE)
In(HO | X5 (O [PV, () < Ay (HO X |12+ ®)
AV ) | oy =Vilk+1) |eo, = Vill) <~ n.V(k) 9

where 7;= 3,(G)) /Ay (H) «4,(,) and 4,(,) denote the minimum and the
maximum eigenvalues of the matrices within the brackets respectively.
[+l denotes the Euclidian norm. For the matrices the induced norm

- compatible with the Euclidian norm is used. Since every isolated
subsystem is asymptotically stable, the matrix G; can be chosen appro-
priately such that the inequality 0 <y <1 is always satisfied.

Let ‘

PAU” "'Ai,z AE Aii) ::51'1‘, IBUH _A'HZ ( BZ;‘ Bl]) =Yii

o b 1)
)'M(Hi)/ll‘/m(Hi) =Uijy E Bii: 2 Yii = (bl .
tei
Define a matrix € €RNMYN as {oliows;
Cii=ni—ai; Bii Vii— i (@i + i) (Bis +7ii)
Cij= = 0ij(Bis + Qi + i) (1355-1"}’;5) for i+#j

Now we are ready to establish the main result of this paper.
Theorem 3 The large—scale discrete— deley system (5) is uncondi
tionally asymptotically stable if the following two conditions ar
satisfied, ; , . PR k
(a) all N isolated subsystems in (6) are dsymptotically stéb‘]&;- /
(b) the matnx C defined in (ll) is an.m matrix. ' :
Proof TakeVi(k) =X:(k)" Hi X (k) as 1he Ly’apunov fum,twn of i:hef

ith subsystem. Then we have

Vitksn ={ RaXi) + 5 Rayi) + S B mp | H{ A
i=1 i=1 ‘
e
o+ 2 \:Ai:_‘Xi(k)’ E‘Buxi(k“mu) ]”X;T H X (k> +V-’(,k);
i=1 =1 ' '

ol
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, N
<a- ﬂ.)Vz(k)+zlAgeﬂlleﬁ§!X (B D IA EH!X(k)t
: : 131
[E-H
N N N |
w2l A IHIIX DS | zB.,uixck-m,,w 2 EtlAﬁnuAn
T 1=1 Coi=1 5=l
i5E1 sk1
- N N
|IH; nummux @h+2 Dy > IAlIH: 1B ,,zummwxck mip) |
i=1 s=1
, EE=1)
N N , |
£ > >iB ,,HHUHBuiH!X;(k =) oG = i) - (12>
s=1 =1 ‘

v noting (8) and (10) and by using the {undamental inequality a*
+b? = 2ab, through simple algebraic operatons we can obtain the
oliowing inequality from (12).

; N '
V(Hl)g[ -,;,+a.,5.,(w,+d:s>}1’s<k> + Za,,ﬂ,,w,,w +<1),)‘V ()
j=1
o i
+ Zw.m,iﬂ.,wp.»%-d))V (k- m,;)y i=1to N.oo (139
j=1
L'gt (14) be the cyomp‘arison system of (13).
/ S5 N
Witk +1) = {1w7},+a;,8,.(¢,+¢ )} Wtk + Ea,,ﬁ,;(ﬁwd—wwd) DW k)
; i=1
L=
N
& 2 i 118 + ®s + DW= mip), =1 to N, SO
i=1 |

't 13 obvious that (13) and (14) can be rewritten in the {orm. of (3)
and {4), and that the possible maximum number of terms in (3) and
”_(4) must be NxN+1 when my’s are all different for i,j=1 to N.
Since 1i<<l, all.the coefficients in (13) and {14) are nonnegativei-e.

a
fter transformation all the coefficient matrices Ay, Ay, ,Ay.y are
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nonnegative. We know {rom theorm 2 that if the system (14) is uncon.
ditionally asymptotically stable, so i$ the large-scale system (5). Singg
the matrix € defined in (11) is an m matrix by assumption, the theorep,
1 shows that the system (14) is unconditionally asymptoticanyyiy
stable. Q E. D. . :
To test if a real square matrix with nonpomtwe oft-diagmndgg
elements is an m matrix, we present the following lemma.,
lemma 3 Let AER™ be a matrix with nonpositive offwdiago-’:{a;:
elements, then A is an m matrix if and only if either of the following
two condifons is satisfied, ; /
(a) all its leading principal minors are positive;
(b) A-' exists and A™! is 2 noannegative matrix.

The proof of this lemma ean be foitnd in ()= [;j dnd is omattea‘f

hers.
5. Example
Consider the following system,
fEED) =8, X B +A KB +B X ~m ) +B . Xy k=m;3) E j

K k+1) SAMYX:(}'L?) +A22"X2(k) +B9;71X1(k‘“mzx)%Bszz(k“mzz)

(15)
where o
(0.001 0 ) g 0.01)
&Rlzé 0 -0,02 @ozé,h_ | 0 005,
| 0 =0.01 -0.02) Looz o )
0,02 0,01 0 [-0.005 0,3 ]
@35"‘ 2 Azz“ ’ . k4
0,08 © 0,05 | -0,05 =0,005 |
{om 0 0,05} {008 0 Y
1 i
Biy=| 0 =0,08 0 ﬁg Bw:ioem —O,lj,
l-02 o ou 0 0,04
, [005 o o f~0,01 0,05 )
le: 2 822:: . : 2
0 0,08 0 0 -0,02

Mgy oMy ety geflae are any nonnegative iutegers.
Now let us test the stability of the system (15) by using theo
em 3, ‘ : ' '
Taking G, =diag{0,999999, 0,9995, 0,9995}, G, ={0,999075
0.809075}, and solving the Lyapunov equation we obtain H, =1, an
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=1,, Where e denotes the 1den*€1ty matfix Wzth dimenm nim. ,
“k'Wa zsolated subsystems of (15)aﬁe asymptotxc-

It-is:clear that 't

n;ce,}‘f;the«_;lea'déixigw;;p‘fringi;, 1o

ff — diagonal elements of C ar

be. apphed eoa very

: ,é,atdvanta;ge Of 0 ‘s
neral class of systems CI m.,-—m for all 2,7—1 to N, we obtaln the'
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