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Abstract

A new criterion is described for choosing the Parameters of the
forecasting algorithm corresponding to the linear growth model, where quasi
—~perjodic components exist in the scries. The forecasts based on the
resulting algorithm allow prediction of the mean level and slow trend of a
process in spite of large random variations, stochastic trend changes and
possible quasi—- periodic components in the series. A new slope change
detection method is also discussed based on a dual model approach. This
method in conjunction with previously developed methods for detection cf step
changes and transjentis allows monjtoring of a time serjes with quasj-

periodic components and subject to discontinuities.

1. Introduction

The linear growth model is widely used in the medical and
commercial fields. The general linear growth model (GLGM)
forecasting algorithm is well- known Holt algorithm (1957) which
contains two parameters. The restricted linear growth model (RLGM)
forecasting algorithm was developed by Stoodley (1979) and contains
one parameter. The values of the parameters in these algorithms are
usually determined by a least squares criterion which minimises the
sum of squares of the one—step ahead forecasting errors. In practice
somc time series contain periodic components at more than one

frequency, and in addition the periods of such components may not
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be an integral multiple of the sample interval of the series. In these
cases, the least squares criterion will not give satisfactory values for
these parameters. Seasonal models also appear to be inadequate for
modelling such quasi— periodic series. This paper describes a new
criterion for modelling such series. The forecasts based on the
criterion allow prediction of the mean level of and slow trends in
the series in spite of large random wvariations, discontinuities and
possible multi— periodic components in the series. The approach of
Stoodley and Mirnia is developed to detect changes in this type of
series. In addition a new slope detection method is developed which
has many advantages over the existing methods. These developments
have been successfully applied in a patient monitoring system (Lu
1983).
2. Frequency response functions of the forecasting algorithm

It is well known that random variations are represented by a
power spectrum with almost equal power over a wide {requency
band, and slow trends are represented by a low frequency compomnent
in the frequency domain. For a quasi- periodic series the periodic
components usually occur around or above some particular frequency.
It is most necessary to study the response of the forecasting algorithm
to these different frequency components in the series. In this situation
the forecasting algorithm may be regarded as a filter in a broad

sense. Holt algorithm is defined as follows;

;:(k) = 7’;’[+kl;\f

~

bo=b .+ Ay (2= 211 (D)

Here ;,(k) is the k —sthp ahead forecast at time t. ;\n, and g,
may be interpreted as the estimated mean level and slope of the
series at time t. A4, and A, are two parameters to be determined. If
4, is zero, the algorithm corresponds to the RLGM. By some
algebraic manipulation, it is easy to show the relationship between
the one—step ahead forecast and actual readings in term of the
parameters A, and A,. Furthermore, the backward shift operator B
is simply ¢ T in the frequency domain, where T is the sampling

interval. Therefore the frequency response function for Holt algorithm

mr=7;l\:_1+,b\t_1+A1(z.'—;f_l(].)) (1)
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can be obtained as,

(1) Ay + Ay - AyeioT
2 1—(2—A1—Az)e-j"'T+(]_—A1)6_2""'T

F,(wT) = (2)

The frequency response function for the RLGM can be directly
obtained from formula (2) by letting 4, =0, Thus;

A,
Iy =5 (l—Al)e_’.WT

Fy(juT) = (3)

3. Frequency response criterion for choosing the parameter in the RLGM

forecasting algorithm

The frequency domain analysis suggests an alternative criterion
for the choice of parameters in the forecasting algorithms of the
GLGM and RLGM. After plotting the amplitude spectrum(|F, (jwT)|)
with different values of 4, in the case of the RLGM, the following
facts become clear,

a) If A, is less than one, the forecasting algorithm behaves like
a low pass filter. The amplitude decreases constantly with increasing
w. There are no oscillations (Gibb’s phenomenon).

by If A, is larger than one, the amplitude increases with .

It can be shown that the RLGM may be equivalently represented
as an ARIMA (0, 1, 1) model, if and only if A, is less than one and
positive. It can also be shown (Lu, stoodley 1985) that A, may be
derived from the limiting form of the Bayesian updating algorithm
for the RLGM and is equal to.

A =(2+R-+/R+4R)/2
where; R=0} /o2

Again A, is positive and less than one. Hence theoretically 4,
should only take positive values of less than one. In practice the
least squares criterion is sometimes found to give a value of 4,
greater than unity which is unacceptable. The new criterion of
choosing A, is as follows.

We define |F, (jw.I')| =c, where ¢ is a constant value. Then (1-¢)
may be regarded as the degree of decay of the amplitude of the
forecasts at cut—off frequency w., For a given ¢, w. is given in
terms of 4, as,
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(1=c¢*)~=24,c* - 9¢* )

w1 = cos ™! < A? -
g o ~2c%(1—A4,) /

In order {o avoid aliasing, w.I' must be less than w. A, and ¢
must he po.sitive and less than oune. Under these conditions, the value
of 4, and w. have' a -one-—lo “one relationship. As a .criteion,
formula (4) is plotted in Fig—-1 with ¢=0,37, The choice of A4, is
straightforward. For example, suppose that a series is sampled at one
second intervals and {requency analysis of the series shows that the
quasi — periodic components are above 0,1 Hz. ' The value of A4,

required is 0,22 from Fig—-1,

(e

: = =
0.1 P 0,3 o 0.5

I*g.1 Criterion for A (63%decay of amplitude)

4. Frequency response criterion for choosing the parameters in Holt
algorithm '

The case of the GLGM 1is more complicated, because the
frequency response function contains two parameters, A, and 4,,
However the same approach can be used asin the RLGM case. In
practice the value of A, is usually much larger thaa the value of A,. L or
example, the modelling of economic time series often leads to a
value of A, less than 0,3 and 4, less than 0,03.

On plotting the amplitude spectrum (|F| (jwT)|), similar
behaviour is observed to that discussed above for the RLGM. Further
morc it is very interesting to notice from Fig—2 that incorporation
of A, in the Holt algorithm enchances the amplitude of the forecasts

at very low frequencies, Under the condition that the A4, is less

4)
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than one and A, is much less than A,, the frequency at which the
amplitude response function has a maximum value is defined as wy
[t is well known that stochastic trends are represented by very
low frequencies in the frequency domain. This enchancement reflects
the fact in the frequency domain that the GLGM allows the
modelling of stochastic trends in time series.

Study of the frequency response function (2) shows that both w,
and w. are determined by the value of 4, and 4,, as well as ¢. It is
cumbersome to represent w, and w. analytically in term of A, and
A, for a given value of c. Instead a computer program is used to
search for these frequency values at different values of A, and A4;

for a given ¢,

1.2]
Amplitide

1,0]

it
W T ere '
1] \ _IJ H'[ QST ATSATE [

Fig, 2 Frequency response of Holt algorithm with A, =0,2 and A,=9,01

The new criterion should be used for modelling the linear
growth model in the following situations.

1) Whenever the forecastsare required to predict the true level
and slow trends, rather than to follow quasi- periodic variations of
the process.

2) Whenever a statistical study of the series indicates that the
series is not fitted by the ccrrect subset of the ARIMA (o, 0, 1),
ARIMA (0, 1, 1) and ARIMA (o, 2, 2) models.

3) Whenever the series has one or more periodic components at
high frequencies.

" However, the criterion has the following limitations,
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. 1) In formula (2) and (3), only one-—step ahead forecasts are
considered. If forecasting needs to be carried out at more than one
step ahead, an extension of the method, following the same approach
as above, is necessary.

2) The method does not guarantee a minimum value for the sum
of squares of the residuals.

5, Detection of step change and transients in quasi— periodic series

Stoodley and Mirnia (1979) first suggested a method for
detection of changes in a discontinuous time series based applying
the backward CUSUM scheme to the one step ahead forecasting
errors. However, when the method is directly used in the type of
series being discussed in this paper, it was found that the scheme is
not robust. A further study has shown that it is because of the
highly autocorrelated residuals. The behaviour observed here is
consistent with the results obtained by previous workers, Page
(1955), Richard et al (1977). R

One possible method of overcoming the problem is to prewhiten
the residuals (Box—Jenkins, 1970). However the procedure for
fitting an ARIMA model is very complicated and needs operator
interaction which will lead to great difficulty in the real-time
situation. It is thus necessary to find an approximation to the method.

The auto- correlation function (ACF) of the residuals and
their first differences were studied. It was found that the first
differencing approximately prewhitens the residuals, especially if
there exists a periodic component in the residuals, Therefore two-
sided CUSUM scheme is implemented on the first difference of the
residuals. In practice it is found that the modified scheme is
extremely sensitive to step changes and transients.
6. Detection of Slope Changes in Qu Asi— Periodic Series

A drawback of the above scheme is that the detection of a slope
change is not guaranteed because of the difference of the residuals
used. However a new method has been developed to detect slow
trend changes which not only compensates the drawback of the
modified scheme, but also has certain advantages over existing
methods. The performance of the new method is independent of the
residuals and it appears to be very robust.

With the new method two forecasting algorithms used are defined
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as the main and auxiliary algorithms and are applied to each series
as follows.

main forecasting algorithm,
2:(1,1) =m(1) + bi(D)
me(1) = me (1) + bi_y (1) + Asen(1) (5)
bi(1) = be_y (1) + Aye (D)
e(1) =z,—2i_,(1,1)
auxiliary forecasting algorithm,
2i(1,2) = mi(2) +b(2)
m(2) = mi_, (2) +5(2) + Ayei(2) (6)

€1(2)=z1— 21_1(1,2)
In order to detect a trend change, d;, S; and I are d-efined by.

dl= ;1(1,1) - 21(1,2)

t
Si= > d, (7)

1=1,
I=t""0

Here 4, is the difference between the forecasts from the main and
auxiliary algorithms. S, is the accumulated value of d; since time t,.
I is the slope length. t, is the time at which S; was last set to zero.
S is set to zero under the following circumstances; 1) a step change
is detected, 2) any type of transient is detected, 3) the sign of d,
changes, 4) a trend change is signalled.

If there is no slope change in the series, d; has a zero mean and
S; fluctuates around this mean. Whenever a trend change occurs,
the value of S, increases or decreases quadratically. A slope change is
signalled when the absolute value of S, exceeds a preset limit (LIM
=ko.), where k is a constant and o. is the standard deviation of
the first difference of the residuals.

7. Theoretical analysis of the- dual model slope detection method

In this section, the new slope detection method desctibed above
is analysed theoretically. An obvious alternative expres'si'on of 9, in
formula (7) is.



42

CONTROL THEORY AND APPLICATIONS Vol;3

di=mi(1) + bi(D) = mi~ b(2) (8)
In order to assess the performance of the method, it is necessary
to find a mathematical model for 4. It can show that 4. may be
expressed in terms of the parameters A4,, 4,, 4, and observation z.

Then after some manipulation, we may have

R(Ryd,=C(A, + 4y~ Ag) + (A = A)BI(1~ B) 2, - 4, b(2)
where, Ry=1-(2-4,-4,)B+ (1-A4,)B* (9)
R,=1- (l—As)B
It is assumed that.

A, KA, — A4 (10)
and certainly A4,<A4,. Since all significant slope changes are detected
within short time, it is reasonable to assum that the pattern of the
trend does not change within this time. Therefore it is assumed that
zy is generated from a RLGM originally with trend b,. With
condition (10) taken into account, it can be shown that equation

(9) becomes:.

(1- 1-A4)BX1-(1-4;)Bld, = (l—B)"Az(bo-a(Z))+(A,-As)(l—GB)d,
where. § =( 2 + R~ /R*+4R)/2

R= oifo}, di~N(0,02/0) R

Equation (11) gives a theoretical ARMA (2,1) model for d,. It is
worth pointing out that b, is the gradient of the series and 5(2) is

the gradient of the auxiliary model. If there is no trend change,

8(2) is equal to b,. Then the first term (itrend term) on the right
hand side of equation (11) is zero. If there is a trend change, then
the series d; certainly has a deterministic trend. Hence;

1) When a trend in a monitored series changes, d; will have a
deterministic trend, and S, will then decrease or increase
quadratically. Thus S, is a sensitive indicator of a trend change.

2) The deterministic trend in d, is proportional to the gradient
change in z,. Therefore with a given preset limit, the larger the
trend changes, the quicker the detection will be.

These results are confirmed by cxtensive computer simulations
and practical experience.

8. Conclusions

This paper has heen concerned with modelling quasi- periodic
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time series and detecting possible changes in such series. A new
criterion has been developed for choosing the parameters in the
forecasting algorithms. The criterion overcomes many restrictions
associated with commom seasonal modelling techniques. The two-
sided backward CUSUM scheme has been modified to allow the
detecti‘on of transients andfstep changes. A new method based on a
dual model approach has been developed to detect short term trend
changes. The methods developed here have been successfully tested

on simulations and used in a patient monitoring system.
References

(13 Box, C. E. P. and lenkins, C. M. Time series analysis
forecasting and control. Holden — Day, (1970).

{23 Holt, C. C, Forecasting seasonals and trends by exponentially
weighted moving averages. Carnegie Institute of Technology,
Pittsburgh, Pennsylvania, (1957).

£3) Johnson, R. A., The effect of serial correlation on the
performance of CUSUM test. Technometrics, Val 16,February,
(1974).

£4) Lu R, A microprocessor based immediate alarm system for
post—c'ardiac surgical Patients. Ph. D. Thesis. Dept."of control
enginee\fing, Un'iversity of Bradford, U. K., ‘(1983).

(5) Stoodley, K. D. C, Lu R., Crew, A. D., Henry, R. M., A
microprocessor based immediate alarm system for post-— cardiac
surgical patients. International symposium on applications of
computers in cardiololgy. Minorca, May, (1983).

(6] Stoodley K. D. C,, Lu R.,, Crew, A. D. 'Old, S. Preliminary
clinical trials of a microprocessor based immediate alarm
system. BIOCOMP 83 conference, Cambridge, U.- K. September,
(1983)- ] L7

{7) Stoodley K. D. C.,, Mirnia M., The automatic detection <of -

transients, step changes and slope changes in the monitoring -

of medical time series. The statisicain, 28, 3 (1979), 163—170:
(8) Lu R, Stoodley K. D:-C.,On~line estimation of the parametérs

in linear growth models. Journal of China Institute of Mining L

and Technology, 3, (1985).



U CONTROL THEORY AND APPLICATIONS Vol.3

Al 7 S8 A v R 3 20 B D 30 ) S i e

K. D. C. Stoodley A A
LA RER) CRER 2B

" =

ASCERE T —FH M AR T B B B 3% AR, RAREE S TV AH R 14
RN, REXRREs i, RERRFSE&H YT 25 4 RS 8,
R M e BUBEZL FT R K REML A BRI R0 . BE TR, ACSGRIBI T —F0 10
WM/ MA AT, R %5 R R B AR A (AR I, BERATE TRER &
B ORI S B e 7] ¥ 51 24T RO B A TR,

P g

(5 a5 4 38)
—( AR EHLZ2H2BIAB)Z —

SR
CHERHEBER G2 IO )

HIRHEH], WU FINBAEN CHREHNREELEDMAB Y 2 ——— (FEH

VAR ) —45, HmBla G R,

ZBRAESIHNREAERSRESE, SEESHE 2T # 55 & R4,

o L N ——

NS

Fourier 35 Hilbert 3, Bow IR HIT 5. RSB S5 /NET IR, %45
P BlHRE S KBRENE, FTierE SefmEtmEyiEmixsk,. 258
BREES LTS RERZIRN I, IR i W TSI AR A SR e, AR T

FEX T5 WA S W FORL R

ﬁ%ﬁrﬁwé,mﬁ&%ﬁnﬁﬁﬁﬁﬁﬁﬂf@ﬁX&%ﬁ%»%E@ﬁﬁ1{

BETHERRARL WHBIT., FREREXTEERAR RS %,





