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Abstract

Two design schemes for robust adaptive control systems are presented.
In the first design scheme a model reference adaptive control system with a
logic— decision device is proposed. The global stability of the whole system
is guaranteed even when the structure of the controlled plant is not known
accurately. The hybrid adaptive control system is used in the second design
scheme. A new parameter estimator is used to determine the parameters of
the main transfer function of the controlled plant. The parameters of the

controller are adjusted at discrete instants by using the estimation results.

I, lIntroduction

Adaptive control theory has made much progress in recent years.
For example, the global asymptotic stability of the adaptive control
systems has been proved!’2’. But up to now most of the design
schemes for adaptive control systems are based on the assumptions
that the structure of the controlled plant is accurately known, even
though its parameters are unknown. These assumptions are rather
too restrictive. Practically it is possible that some subsidiary charact-
eristics of the controlled plant can’t be considered in the design.
Theoretical analysis and simulations'®’ show that this subsidiary
characteristic of the controlled plant may cause instability of the
whole system. Therefore, the problem of robustness of the adaptive

control systems has not yet been solved. 1t draws much attention
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during the recent years'*’’¢". [n this paper design schemes for

robust adaptive control systems are presented.
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i, Intelligent Model Reference Adaptive Control System ( MRACS)
 The general design scheme for MRACS is shown in Fig. 1,
For the above design scheme the equivalent error model shown in

Fig. 2 can be obtained'’’.
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The meanings of the nomenclature in Fig. 2 are as follows,

Wa(S)
wT (1) 2 Cr(2) 9] (1), Yo (1) 575 (1) ]

transfer function of the reference model.

BT =67 () - 6+
0T(t)é|:kp(t) 901 (t) (S 9Cn— (t) ’do(t) ’dl (t) 9 L1 !dn—l (t)j
= k(1) sCT() 5d o (1) ,dT (1))

p* —=matched controller parameter vector.

G——counstant positive—definite adaptation gain matrix.

The equivalent error model shown in Fig. 2 is obtained wunder
the assumption that the structure of the controlled plant is exactly
the same as that of the reference model. It is shown®®’ by the
Lyapunov function method or hyperstability theory that the whole
system is globally asymptotically stable if Wa(s) is strictly positive
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real. Wu(s) can be chosen to be strictly positive real only when its
pole excess is not greater than 1. If the pole excess of the plant is
greater than i then sovie complicated design schemes "7%° may be
used. In all these design schemes the structure of the plant is
assumed to be accurately known. M some subsidiary characteristics
of plant are existent but unknown, then W,(s) in the error model

will not be exactly equal to the transfer function of the reference
model. Let us express the former by Wi(s) in this case. Wh(s) may

not be strictly positive real. Therefore, 'the problem of global
stability is not solved.

It is known that for causal systems the concepts for positivity,
hyperstability and passivity are equivalent''®’. From the viewpoint
of passivity analysis the global stability of the whole adaptive
control system is guaranteed if the equivalent error model system
as shown in Fig. 2 is strictly passive. The feedback loop in Fig. 2
is an integrating parameter adaptation loop. It is passivel'®?. As
shown in*!!? that the mecessary and sufficient condition of " the
strict passivity of the whole system  shown in Fig. 2 is that the

forward loop is strictly passive. But we have pointed out that
Whn(s) can’t be strictly passive if its pole excess is greater than 1,

or it may be not strictly passive if there are some unconsidered
subsidiary characteristics of the plant. If there is some scheme can
make the forward loop strictly passive in any case, then the

problem is solved. Such a scheme exists. It is shown in Fig. 3. SFS
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in Fig. 3(a) is a sign—{following system which is realized by a
sign— comparison device connected to an ideal relay. SFS keeps the
sign of the e,/ (1) same as that of y,(¢). Hence the system shown in

Fig. 3(a) is equivalent to that shown in Fig. 3(b), where
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Joh.{.(t- )r(r)dr

S _ e (1)
4o j“h,(t—r)r(r)dr

L]

and h4(t—1) and h.(t— 1) are impulse reponses of Wa(s) and W, (s)

respectively. k(#) is never negative. Now it is easy to see that the

system shown in Fig. 3(a) is strictly passive if Wr(s) is strictly

passive no matter whether Wi(s) is strictly passive or not. The

only requirement is that Wih(s) should be stable.

Now a design scheme for robust MRACS as shown in Fig. 4
can be suggested. In this scheme W.(s) has the same numbers of
poles and zeros as those of the plant without consideration of the
subsidiary characteristics of the plant. Wn(s) may not be strictly
passive. W,(s) has the same number of poles as that of Wa(s), but it
is chosen to be strictly passive. The e,/ (t) instead of the e,(t) is

now used for the adaptation algorithms.
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This is a kind of intelligent adaptive control system. The
proposed SFS is a logic system which performs a simple logic
decision. If €, () is used in the algorithms for controller parameter
adaptation it will cause the parameter adaptation process to be
divergent in some intervals. SFS will change the sign of this model
error in these intervals and thus make the parameter adaptation
process always convergent. Thus the global stability of the whole

system is guaranteed.
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11, Hybrid Adaptive Control

The usual MRACS is a nonlinear time-varying system. The
global stability of such a system is hard to guarantee. If the
parameters of the adaptive controller are adjusted only at discrete
instants, then the whole system will be linear and time —
invariant during the  intervals when the parameters of the
controller are kept constant. The stability of such a system is much
easier to solve. Such an adaptive control system is called a hybrid
adaptive control system. A design scheme is shown in (123.

In this section a design scheme of the hybrid adaptive system
is suggested, First of all a parameter estimator for the controlled
plant is presented when it possesses subsidiary high frequency
characteristics not considered in the model. The parameters of the
adaptive controller are adjusted at individual instants by wusing the
estimated parameters of the plant. The conditions of stability of
the whole system will be given.

1, parameter estimation

Let the transfer function of the controlled plant be expressed by
BL(S) BH(S)

PO T A (927
where B, (s)/A,(s) denotes the main characteristic of the
controlled plant, and
B (s) bys"™ +bys""t e 4 by
A, () shas e va, L9

n is known, H(s) =By(s)/Ay(s) denotes the subsidiary high
frequency characteristic of the controlled plant, and Ay(s) is a
Hurwitz polynomial.

Let u(t) denote the input and y(#) the output of the controlled
plant, Choose K(s)=s"+ks" '+ --+k, as a Hurwitiz polynomial.

From (2) we can obtain for t—»>co

1 B, (s) B, (s)
Yis) = — (K(s)— RSN -1y L
(s) ) CK(s) — A ()Y (s) + D) U) +[H(s) —1) D) U(s),
Hence for sufficiently large t we have
y() =T (O* +2() (4)

where
e*ztkl—al’kz—al,kz_az,"',k"_an,bl"”b"]T ( 5 )
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T
'V(t)=L‘1§ {"-}—_"ES"—I,"',S,],jY(S)’— 1 [sn—l’...,s’ljU(s)] g ( 6 )

K(s) K ()
B
ZU>=E*{—i%§MEHu>—qu>} C7)

6* should be estimated and w() is the signal vector which can
be obtained from the outputs of the filter 1/K(s) excited by u()
and y(1).
If we take the value of y(i) and w»(t) at discrete instants ¢ |
with the sampling period At in (#,,f,), from (4) we have
y(t) = V(0% + 2 (4) (8) |
Multiplying both sides of (8) by »(#) and taking summation

we obtain a matrix equation

Q0% + @ =1 (9) |
where
M
Q= E PV TERM 2, MM =1, ~ 1y,
k=1
M
n= Dyt v(n) ERFAY,
k=1
M
@ = ZZ(tk)V(tk)ERZ”” (10)
k=1

If the input signal u(t) is sufficiently “rich” and i is chosen to

be appropriately small, the matrix Q will be nonsingular (see

Appendix I). Denote the estimated parameter vector of 6* by 6. then

from (4) we have

Yyt = ()T 0 (11)

From (9) we have
7=00 (12)

M

(v (e .

=
=
)
=
®
=3
>
)

Denote the error vector of the estimated parameter vector by
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[ 5—0*.Taking the following strict convex function

L(9)=1/2(n- 1)7 (- 7)=1/2870709 70 6+1/207® (13)
as performance index we can get

G=051% (14)

as a minimization solution of (13). Different numerical methods

can be used to obtain 6 in a finite time®!®’.
From (9) and (14) we heve
6 =0"'¢ (15)
By using (14), (15) it is easy to show that the norm of the
relative error of the parameter error vector satisfies the following

inequaity

o~ @
1 91 < 102 <Condcy —— (16)
Cond (O |nl. [ é1.

where Cond(Q) is the condition number of the matrix Q.

flell. can be estimated as follows (see Appendix II),

19l <C Sup| # (2)|, C=Constant, (1-»c0). 179
i

Eq. (17) shows that the parameter estimation error will be
reduced if the high frequency component of the input is reduced.
Another way to reduce the norm of the parameter error vector is
to reduce Cond(Q). If M is increased this will be donef!37,

2, Design of the hybrid adaptive control

The block diagram shown in Fig. 5 is used for the design of

the hybrid MRACS. we assume that B;(s) is a Hurwitz polynomial.

e e =

iy a4 Bu(S)

1 PI=375 HTIJ T &=
= Mer | L

Here C(s) and D(s) are two polynomials of order n—1. Their

parameters can be adjusted at discrefe instants, A reference model
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of order n is taken to be W,(s) =B*(s)/A4*(s). Both B*(s) and A*(s)

are Hurwitz polynomials. we take B*(s) =F(s). The transfer function

of the controlled plant is expressed by
B*(s)B.(s)H(s)

(B*(5) +C(5))A,(s) + BL()D(s)H(s)

According to the block diagram shown in Fig. 5 the following

W(s) =

(18)

design procedure is suggested,

(1) Estimate A;(s) and B;(s) by using the suggested estimator.
If r(¢) is sufficiently “rich”, then u(t) is also sufficiently “rich”
(see Appendix III), and the estimation of A4,(s) and B;(s) can be

performed. We denote them by ﬁL(s) and ]§L(s).
(2) Adjust the parameters of the controller according to

C(s) = EL(S) - B*(s), D(s) =A4*(s) - ‘ZL(S) (19) |

If the whole system is stable the output error e(t) between the
reference model and the adaptive control system will be bounded.
That is |e(?)| <o, where o is a certain constant.

(3)1If the parameters of the plant have changed and the system
become unstable, then |e(?)| will increase and we may have |e(?)|So.
For this moment we repeat steps (1) and (2) so as to stabilize the
whole system once again.
3, Stability conditions

Let us analyze the stability of the proposed control system.

Denote the estimation error of 4, and B, by 4, and B, respectively*.

The estimated 4; and B; are denoted by ;IL and ﬁL. From (19) we

have

C=(B,+B,) - B*

- (20)

D=A4*- (AL+AL)

Substituting (20) into (18) we obtain
*
W) = = B*B H =

(B,+B)A, +B, (A*~ A, — 4))H

B*B,L
= (21)

BLEA*‘I'D(H— 1)] - BL ZL +§LAL

"For simplicity the Laplace variable s is deleted hereafte:”
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Siﬂce H=BH/AH’ from (21) we have

B*B,B
W(s) = s - (22)

BLCA* Ay + D(By— Ay) ) — BLAgA; + ByA Ay

The following lemma due to Rouché is used to determine the
stability conditions of the system.

Lemma (Rouche’s Theorem®!*?),

If on a closed loop in the complex plane we have

(1) f(s)+#0

(2D [g®|<If9)]
where f(s) and g(s) are polynomials of compjex variable s, then
f(s) and f(s) +g(s) have same number of zeros within the closed
100p.
Applying this lemma to determine the stabilsty conditions, we get

| A* (jw) Ay (Gw) | > | DGw) CBu(Gw) — An(iw) 11, (23)
| B, (jw) CA*(GGw) Ay (jw) + D (jw) By (jw) — Ag(Gw)) ]|

> | = B, (jw) AuGw) A, (jw) + Bu(jw) AL (iw) AuGw) | (24)

Eq. (23) shows that A%A,+D(B;—-A4y) and A¥*4y have the same
number of zeros in the open left half complex plane. Eq. (24)
shows that the denominator of W(s) has the same number of zeros
as that of B [A*A,+D(By— A;)) in the open left complex plane.
Assume Ay is a Hurwitz polynomial of degree m, then A*4,+D (By
- Ay) has n+m zeros in the open left half complex plane.Assume
B, is of degree 1, then the denominator of W(s) has (n+m+1) zeros
in the open left half complex plane. Since the denominator of W(s)
is of degree (n+m+1), therefore it is a Hurwitz polynomial, and
the system is stable. That is to say Eqs. (23) and (24) are the
stability conditions of the system.

Eq. (23) can be simplified as follows.

> |HGw) - 1] (25)

A* (GGw)
DGw)

Eq. (24) can be changed to,

(26)

' A*(jw) + D(jw)(H (jw) — 13

By (jw)
A(jw)

‘>2‘ B.(w)



54

CONTROL THEORY AND APPLICATIONS Vol.3

AGw)_|
AL Gw) |
Eqs.(25) - (27 ) show that in order to enlarge the stability

region we should.

2>‘ 27)

(1) reduce the high frequency component of r(#) so as to
make |H@w)|=~1;

(2) make|d*(jw)| as large as possible.
1Iv. Conclusion

Two design schemes for robust adaptive control system are
presented in this paper. In the first scheme the parameters of the
controller are adjusted continuously. A logic decison device introduced
into this scheme guarantees the global stability of the whole system.
This design scheme has a very strong degree of robustness. In the
second design scheme the parameters of the controller are adjusted
at discrete instants by using the results from the parameter
estimation. The stability conditions of the system are given. These
two design schemes possess respectively their own merits. It is
evident that the combination of these two design schemes will give
more satisfactory results. The first design scheme guarantees the

global stability and the second scheme allows rapid adaptation.
Appendix |
If u(#) is sufficiently “rich?, then the elements of »(t) will be
— 1
independent ecach other in (#,,t,3''%’. Therefore matrix O r v (1)
12

M
()Tt = {6:,-} (1, =1,2,:-52n) is nonsingular. Let Q_é 2 V(L)Y (t)T At
k=1

= {a;;}. From the continuity principle we know that when 4t is

appropriately small, there will exist a 8>0, when |a,-,-—-a-,-,-|£6,

matrix Q will also be nonsingular. But we have |Q|=4t*"|Q], hence

Q is also nonsingular.

Appendix ||

From (10) we have



We.l Design Schemes for Robust Adaptive Control Systems 55

M
ol <max|z @) | 2 v @)l (11,1
k
k=1
Let
Bf(s)
CH(s) =100 (s) = e o sU(s) (11,2)

where Bjj(s)/Au(s) is strictly proper.

Since K(s) and 4;(s) are Hurwitz polyomials, therefore from
Ad1,1), (I1,2) and (7) we can obtain inequality (17).

Appendix Il

Since the system shown in Fig. 5 is linear during [, ,t2], we

can write

U(s) B*A4, A,
crevitgme et i3’ L 11
R(s) (1I,1)

(R E)ALAH + ZLBLBH

If r@1) is sufficiently “rich”, there will exist no polynomials  p,(s)
and g, (s) of order (4m+2m~—2)which satisfy§!s?

1 (IR(s) =q,(8) (llle2.)
Therefore, if u(t) is not sufficiently “rich”, there would exist two
polynomials p.(s) and g,(s) of order (2n+m—1) which satisfy

D (U () =4, (8) CI11,3)
Subsifituting (II1,1) into (II1,3) we can get a contradiction to
(111.,2). Hence, if r() is sufficiently “rich”, u(i) will also be

sufficiently “rich”,
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