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Abstract

This paper completes the proof of Popov inequality in hyperstable
adaptive systems, and reveals the relationship between Lyapunov ang

hyperstabil ity approachs to adaptive control systems,

To design the model reference adaptive systems ( MRAS ) using
the hyperstability approach, we must solve the following integral

inequality
J“ uT (1) j' 08wt )\t 1) 87 (1) Iy (1 dt! db> — g2 (1)
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where y,uCR" S/ (u(t’),t/,t),S”(t)ER"“‘"’(tOSt’ =t), and @® is a finite
positive constant. Landay has indicated the solution of ineq. (1),

that is

S (u(t’y 1, D=HE=1)yuty. 4Ty .G, (2)

where H(t-1') is a positive definite square matrix kernel whose
Laplace transformation is a positive real transfer matrix with
pole at s=0, and G, is a positive definite constant matrix with
appropriate dimension. This result which have shown up in current
books and papers is not very strict and has some mistakes, so this
paper will give the correct result.

Replacing S (ut’ ), ,t) in ineq,(1)by its éxpression given by
eq. (2), one must solve the following integral inequality instead

of (1)
I fT(t)[} HG@E=v)jaryar +y :’(1;> -t (1)

where (), V,ER" and Vi, is a constant vector, a? is 4 positive

constant.
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If V,=0, ineq. (1) is holding. FFor V=0, the author used the

following relation

'tﬂ

Vo= H(t= 1y f*qv C2)
tg=h
here f* is constant vector, 0<h<co. Eg. (3) holds only if
L(H()Y)=H (s):%(} (G>0). A common positive delinite square
matrix kernel H(t1—#") whose Laplace transformation has a pole at
s=0 depends on time t, so eq. (3) is invalid. For example,
1
— 0
N 1 0 :
H(s) = s H(i~1)= [ ]l(i-i’)
1 0 e- (t=t1)
0
s+1
where 1(t=%) is the unite step function. We have
1 0 ok 0
ty [ ] N [ ]fai(-
Jtg-nl g pmct-tr) 0 e '(efo —etomh)
for ¥'=03,23" and any f*€R", eq. (3) is not holding.
To attain the goal, we separate pole s=0 from others of H(s),
thus
1
[{(S):f71(8)+_?G
where G=lim sH(s) (G>0) and hence H,(s) is a positive real
s—>0 ‘
transfer function matrix. We rewrite ineq. (17) as
t $
[rol] ma-vana Ja
tD :!ﬂ
{tl “2
+] fT(i)[; G- 1= 17y (' yd +V0] A= - a (1)
to Yo

Because H,(s) is positive real, the Popov inequality holds for the

lirst term on the left—hand side of ineq. (4). Assuming V,ECRange
G, there exists a constant vecter f¥CR™ such that
Vy=G-f¥

and for any h>0, we have
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Let

1

Jf(t) 1>t
b
| () = 17#&* 1, = h=<t<t,
1

0 otherwise
We get
t t
J ! fT(t)H G-1¢=t) -’ Hdt +V, ]dt
ty

to

t, R t 7 1 (% s [} % 747
_-_j : f/f(t)ﬁ G- f (" Hdt’ ]dt— : [ 1o H G- fidv |dt
to~h o~k h* to—h

0 to—h
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Note that C is a positive square matrix kernel, so

j“ f'm)“' }Gﬂf’(t’)dt’}dt—é—f%‘@fﬁ‘z—;§
to-

to—h
~~
where a 2 is a positive constant. Since V, as well as 8”(t,) corresponds

with unknown parameters and ineq. (1) should be hold f{for
arbitrary V,, it is necessary that ‘
RangeG=R"

That is to say G>0.So the sufficient conditions under which inegs.
(1) and (1’) hold good are that the Laplace transformation of
matrix kernel H(t—#) is positive real whose residual matrix at
pole s=0 must be a strictly positive definite matrix instead of
with a pole at s=0.

Now we attempt to discuss the differences in the adaptive law
of MRAS between the two schemes. In the asymptotically stable
model reference adaptive control systems, the adaptive law deduced

from the Lyapunov approach is an integrator whose transfer matrix

is L G(G>0), while using the hyperstability a_pproach it is

hh
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composed of an integrator which is equivalent to that one, and a
linear dissipation subsystem in parallel. Those are shown in Figs.
1 and 2. Since the time constants of the additional part in Fig. 2
are smaller than that of the integrator, the system shown in Fig. 2
may have higher adaptive speed. Even through‘ both scheme are
sensitive to disturb owing to the existence of the integrator, the

latter has the potential to design a robust system.
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Fig,1 Block diagram of MRAS Fig,2 Block diagram of MRAS
by Lyapunov method by hyperstability method
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