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Abstract

This paper proposes a new implicit algorithm for pole~assignment
self —tuning regulator based on that ofr73. The global convergence properties
are obtained by the yse of near supermartingales. Simulation results

show the algorithm is effective.

1, Introduction

Interests on pole —assignment self —tuning algorithms have been
enhanced in recent vears. Numerouys algorithms have been proposed
C1J02304305306). But the applications of these algorithms are limited
for their great computational efforts. In a recent paper (7], M. B,
Zarrop et al introd uced several valyable implicit algorithms which
greatly reduced the computation. But the global convergence properi-
ies of these algorithms remained unanalyzed. This baper proposes a new
implicit algorithm. On the assumption of stability, the global conver-
gence results can be obtained by near supermartingales. Simulation
results show that +he verformances of the algorithm are similar to

that of algorithm 2 of (7).

2, Implicit Self — tuning Algorithm
Suppose the system to be controlled can be described by the fol-

lowing equation,
A(a‘l)/(t)— ‘kE(q‘l\J(t)+C(a Dye(t) (2.1)
where Al =11 a1 4 - ta, g
Bg=1) =p, +blg‘1 Hoee b b g
C(‘:/*l‘ =1 +Clg‘1 oo, g
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g¢~' is the one—step backshift operator. C(¢g™!) is a stable polynomial.

Y(t) and U(t) are the output and control, respectively. e(t) is the
noise.

If the following control strategy is applied to system(2,1),

F(g-DHUW +G(@HY @) =0 : (2.2
where F(g~'), G(g~') satisfy the equation,
AlgmOF(qg™") +¢7¥B(g")G (g7 =C(g DT (¢ (2.3)
then the closed —loop equation can be written as,

T DY) =F(g~)e®) (2.4)
We see that the system is poles assigned. '
The conditions for eq. (2,3)having a uniqe solution is that A(g~1),
B(g™') are coprime and deg (F(g™')) =ny=n, +k -1, deg(G(g™ ")) =n,=
1.~ 1, deg(C(g" DT (g~ ")) =<nj+ng+1, Since F(0) =1, we rewrite F(g™!) =

l+q‘1f7(q“) and denote the cofficients of f?“(q"l), G(g~') as,
6% = (Frfur gow8no) " (2.5)
The materials discussed above are well —~known. Now we derive
an implicit self —tuning algorithm to assign closed —loop poles for
unknown parameter systems.
Combining (2.2) and (2.4), get o ,
T DY@+ =F@gDOU®W+G@ DY@ +FgDe@+1) . (2.8)

This equation can be rewritten as,
T( DY (+1) =U@ =F(g)U @ =1) +e()) +G(g~ )Y () +e(t + 1)
' (2.7)

Using the past residuals f,:\(t) instead of e(t) in eq. (2.7), we

have the following equation

Y(+1)=60T9() +e(t+1) (2.8)
where Y+ =T(HY0@+D-U@® (2.9)
oty =U@~1) + 2<z>---U<t—nf>+ ?(z-nf+1> Y)Y —-u,0T  (2,10)

Then, the following implicit algorithm is obtained,
1) read in the current output value ¥Y¢t+1) and form the filtered
variable

Y+ =T DY+ 1 -Uw (2,11)

2. ) estimate the controller cofficients ¢* using RILE on the model(2,8).

3) implement the controller
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then
F R AN
S.a) Hm =3 (e(t) —e(t))?=0 a.s, (3.
]\/'_)OO.Z\/t:I
15 -~ 1N
3.b) lim =3 e =1lim —2 eX(t) a.s, (3.
) N>oco Nizi N-—>oo {Vi=1
1 N A~
3.¢) lim =2 (B, =60%)Te-1))2 =9 a,s, (3.
Ne»oo INi=1
8.d) lim (6, —6%) (P71 /1) (6, —p*) = o as, (3,
- co
-0 If, in addition, lim P;'/r>0 a.s.. then lim 0 =6+ (3.
—» 00 > co

Ut+1) = ~G(g")Y (t+1) ~F(g-H)U (1) (2.12)

For more details, the recursive formulations are as follows,
Bror =0, +Poo(t) (Tt + 1) —2 7,8 /x, (2.13)
x,=1+<PT(t)Pf§0(t) (2,14)
Pt+1:Pt(l_(p(t)@T(t)Pt/x;) (2.15)
g(t+1)=57(t+1)—<ﬁT(i)é:+1 (2,16)
Ut+1)= - U@ Ut —ny+ 1Y (¢ + DY (t—ng+1)) @H (2.17)

where é:H is the estimator of 6% at sample time t+1,
This algorithm is somewhat similar to algorithm #2 of (7). The

main difference between them is that the algorithm proposed in this

baper merges the term —Z;(g‘l)e(t) with F(Q_I)U(t—l) instead of Y
(t+1). This change can aid the analysis of the convergence proper-

ties.

3. Convergence Properties

Theorem 1 For the implicit self —tuning algorithm proposed in
section 2, if the following assumptions are satisfied,
3.A) (Y}, (UM} are bounded, i.e. the closed =loop system is
stable.
3.B) {e(t)} is a sequence of white noise with E{e(t)} =0, E{e2(1)} =02
e(?) is independent with observations before time t Y@E-1U
(t=1)--)Further, le(t) | <M,

1

3.C) 1/F(g~')y =4 is strictly positive real.

1)

2)

3)

4)

5)
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—
The proof of the theorem is based on the results of (3) and will

not be presented here since it is quite long.

The restrictive part of theorem 1 is the condition of (3.c) since
many systems have non—positive real 1/F(g™") — 4. Simulation resu-
lts show this condition may be replaced by a weaker condition of
stable F-1(g~!). Similar to algorithm # 2 of (7], the regulator para-
meters don’ t convergence to their true values for systems with

unstable F~1(g~1),
4. Simulation Results

A great deal of examples were simulated on a digital computer.
The results showed that the strictly positive real condition in theorem
1 was over strong. The algorithm seemed to work well in all systems
with stable F-1(g=!), If deg F(g~') =1, the strictly positive real and
the stability condition are equivalent. Now we present three exam-
ples to illustrate the above conclusions.

In all examples, the initial values of the parameters are taken
to be zero and the following technique is used to avoid the possible
initial unstability of the system.
1) restrict |U(t)|<5 (4.1)
2) set the forgetting factor 0=0,8 in the next ten steps when U(1)
is restricted (i.e, when the control U(i) get from eq. (2,17) is
greater than 5 and is restricted by eq.(4.1) |

Example 1 (1-0.8¢")Y(#) =(0,9+0,5¢ 1)U —1) +e(t) (4.2)

This is an example of (7). We choose T(g~') =1-0,9¢"", 0>=0,1.
The performances of the algorithm are similar to that of algorithm
#9 of (7). Fig. 1.1 shows the convergences of parameters of the
regulator. Fig.1.2 and Fig.1.3 show the values of e(?) and e(®)

~ e(1), respectively. As indicated by theorem 3, we see that lim 6:

t—>» 00
=6* and lim (e(t) — e(1)) =0,
t—» oo
Example 2 (1-0,5¢")Y (1) = (2.5 -¢"HU(t—=1) +e(®) (4.3)

This is also an example of (7). We choose T(g"!')=1, o0*=0,1.
The system has an unstable F-!'(g~') =1/(—-2¢'). The values of
regulator parameters are shown in Fig. 2.1 and Fig. 2.2. Similar to

(7), we see that the parameters do not converge to their true values
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for systems with unstable F~1(g-1),

Example 8 (1-0,87")Y (1) =(1+0,7¢-)U(t-2) +e(t) (4,4)

We choose T(g~')=1+0,1¢"", 0?=0,1, From eq. (2.3) we get
F(g7')=0,9+0,3360"" and G(g~') =0,384. It can be proved that
1/F(g~') =4 is not strictly positive real but F-1(g=') is stable. simu-
lation results illustrat that the perameters convergence well as shown
‘in Fig.3.1 in spite of the assumption (3.C) is not satisfied for this
system. So we conclude that the strictly positive real assumption of

theorem 3 is over strong.
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"5, Conclusion

A new pole—assignment self —tuning algorithm is proposed. On

the assumption of stability, the global convergence property is ana-

- T.lyzed by the use of near supermartingales. Simulation results show
the algorithm is effective but the problem of making the algorithm

work well for systems with unstable F~!(g~!) remains unsolved.
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