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Abstract

The robustness of reduced —order observer -based linear control syste-
ms is discussed in this paper, Three important frequency domain properti-
s and a theorem for these systems are derived, And a pole-assignment

procedure for reduced ~order observers is given,

For the full —order observer— based control systems, Doyle and
Stein pointed out in (1) that in order to achieve the same robustne-
ss as the full-state feedback implementation, one should make
some observer poles towards stable plant zeros and the rest towa-
rds infinity. ’

The robustness of reduced —ordes observer—based control syste-
ms is discussed in this paper, The robustness results of (11 are
extended to the reduced — order observer case successfully,

Consider controllable and observable linear time-invariant mult-
ivariable plant ‘

. ’ I4 N
xy (1) A,y A xy (1) B, S )
= + u(t) (1)
;"z(t) A, 4y, sz(t) LBZ)
x,(8)
y(t)=00 I =x,(t)
%,(2)

Where x,(t)=y(t)ERP is the output vector, %, (t)ER"? is the
unavailable state vector, u(t)ER",m=p, rank(B)=m
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In analogy to the transmission zeros of linear multivariahle
systems'®' , we have ,

Definition The set of generalized transmission zeros of the
subsystem of (1) (A1£9 By, 4yy, By ) is

MI-A,, B,
gﬂ,i. rank[ ~4,, B, f<n (2)

Through calaulation, the generalized transmission zeros of the
subsystem (A 4By, 4,,,B, ) are the zeros of polynomial
f.-(s)=det(sI—AH)det(Bz+z121(s'1'—A11)“1B1) (3)
Suppose all the generalized transmission zeros of the subsystem
(A,,,B1,4,,,B,) have negative real parts,

The Laplace transformations of equation{1l) are
xl(s)=(sI—A11)‘1A12xz(s)+(sI—A1I)‘lBlu(s)
xz(5>:(Sl._Azz)nlAzlxl(S) ‘*‘(S]“Azz)_leu(S)

y(s) =x,(s) (5)
and those of the reduced — order observer'3’are
V(s)=(sl-4,, +MA,, )" { (B, —MBy)u(s)y+CA4,, -M4,,
+(A11"']K[A21)]W]y(s)} (6 )

;1 (8) =W (s) + My(s) 7))

Where M is the reduced - order observer correction matrix,

4

Fig, 1 and Fig, 2, show the full ~ state feedback implementation
and the reduced — order observer — based implementation respectively,

When the variations of the plant parameters cccur, the separat
ion proPerty of the observer—based system can not be held, If we
want to study the stability of the overall system under influence of
variations of plant Parameters, we must discuss the open loop tr-
ansfer function matrix with broken loop at «X» rather than
“XX” in Fig,yz, Now we have three frequency domain properties,

property 1 For the linear time~invariant systems, the closed
—loop transfer function matrices from command input y,.(s) to state
vector x(s) are identical in both implementations 2, and 3,,

-~ property 2 For the linear time —invariant systems, the open
~loop transfer function matrices from Control signal u’/(s) to contr-
ol signal u(s) (loops broken at point “XX” Yare identical ip both
implementations 2 andd, .,

property 3 T'or the linear time ~invariani systems, the open

\ B
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Fig, 1 Full-state Feedback ImplementationZ,
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Fig, 2 Reduced ~order Observer - Based Implementation,

—loop transfer function matrices from control signal u¥(s) to contr-
ol signal u/(s) are generally different, They are identical if we
choose the observer Correction matrix M to satisfy,
Bi(By+ Ay (sI=A; )7'BI = MU+ Ay, (sI-A4,,) ' M (8)
for all s, where 4,,, B,, 4,,, B, are the matrices in(1),
when B,=0 or MB,=0, the condition (8) becomes (8’)
B (4, (sSI— A7 By = MCT+ Ay, (5T~ 4,) M3 (8 )
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property 1 and property 2 are very well known. The proof of
property 3 is given in Appendix I, .

An adjustment procedure is also given in (8), If (8) holds for
all s, the open—loop transfer function matrices are identical in
both implementations 2 ,(see Fig, 2) and X, (see Fig, 1),
Therefore, implementation X, has the same robustness as impleme
ntation 2 ,.

Unfortunately, (8) is a nonlinear matrix equation of M, we
suppose M is parametered as a function M(q) of a scalar variable q

as mention ed in €13 , M(q) should be so selected as to satisfy

q—')OC
M (B, -MBHW

for a nonsingular matrix w and the stability of the observer,
Then (8) will be satisfied asymptotically as g—>co, The finite poles
of the reduced—order observer will be zeros of polynomial(see
€43 ).

f(s) =det(sI—A4,,)det(By, +4,,(s[-4,,)""'B,] 9)

which is identical to (38), Then we have

Theorem In implementation 2;, the finite poles of the reduc-
ed-order observer should be coincided with all zeros of the genera-
lized transmission zero polynomial f, (s) of the subsystem (A,,,
B,, A.,, B,), and the rest should be selected as fast as possible
to achieve the same robustness as implementation 2,

So, the poles of the reduced—order observer should be ass-
igned as that some finite observer poles should be driven towards
the stable generalized transmission zeros of the subsystem (4,,,
By, ‘4,,, By;) and the rest should be sclected as fast as possible
under the noise restriction, k

Example The controllable and observable plant is

X (1) -1 2 0 £ () }1“ |
PN I 0 X, () |+ 0 | u(t)
x5 () 4 L= x@) o o

g =00 0 1 J10x; (Dxa (Dxy (DI =x,(1)
The subsystem (A;, by, A,y) is
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s
a a -1 0
Ay = a . 12\’ = I .
L a1 Gy ! L-6 -2
bl = } AZl ={4 12
9
The generalized transmission zero of the subsystem is s= —0,5,
We use LQSF design method and obtain an optimal feedback

gain matrix k*=09,1,2,2], In order to elucidate the influence of
the chang of the observer poles on the robustness of the closed-
loop system, we discuss 8 cases here, The computer simulation
results are showed in Table 1, We in which a
pole of the reduced~order observer s= ~0,5 is identical with the
generalized transmission zero of the subsystem, has the largest par-

ameter stable region, While case 3.to case 8, which do not assign

see that case 2,

the observr poles as the procedure proposed above, the faster the

observer poles are assigned, the smaller the parameter stable region,

Table 1
No poles of the n, m, 2'—2—1—100% valyations of
observer asy robustness
1 . full-state / / 156.7 % ideal case
feedback
2 -0,5, — 100 24,75 ~-1,5 156.7% best
3 -5, —100 - 198 894 86.7%
4 -20, —100 -940,5 3879 73.3% \
5 -50, — 109 —2425,5 9849 50% poor
6 - 104i5 ~53 229 96.6%
7 - 20435 - 163 899 76.6%
8 - 2015 - 293 1209 73.3%

So, we have the following conclusion;
where M=(m, m,J7 is the observer correction matrix,

Sa,; is the perturbation of 4,4,

When we design the reduced-order observer, in order to achieve
the same robustness as the full —state feedback system, the poles
of the reduced—-order observer should be some of
which towards the stable generalized transmission zeros of the

subsystem and speed up the rest as fast as possible under the noise

assigned - as

restrictions,



98

CONTROL THEORY AND APPLICATIONS Vol 5

References

(13 Doyle, J,C,, and Stein, G,, Robustness with Observers, IEEE Trans,
Autom, Control, 24: 4(1979), 607 - 611,

€23 Davison, E,I,, and Wang, S, H,, Properties and Calculation of Tra-
nsmission Zeros of Linear Multivariable Systems, Automatica, 10,
(1974), 643-658,

(33 Fortmann, T,E,, and Hitz, K.L., An Introduction to Iinear Cont
rol Systems, Marcel Dekker Inc,, New York, (1977), 535-537,

4] Wang, Y,Y,, and Gao, L., Robustness of g Class of Reduced - Order
Observer -Based Control Systems, Information and Control, 14: 3,
(1985), 22-26 (in Chinese),

Appendix I Proof of Property 3

From Fig,1 and Fig,2, we know that the open—loop transfer
function matrices from control signal #”(s) to x,(s) (with loop
broken at point X” )in both implementations 2, and X, are identi-
cal, Hence, it is clear that all we want to prove is that the trans-

fer function matrix from u”(s) to x,(s) in 2| is identical with that

from u”(s) to 21 (s) in 23, if(8) is satisfied for all S,
Let ¢(s)A(sI-A4, )}
For implementation X, (see Fig,1), from (4)
X () = () A, 3%,(s) + ¢(s)B,u"(5) (I,1)
and for implementation(see Fig.,2), from (6) and (7) N

%y ()= (71 (s) + M4, ) (B, ~ MBy)W () + (6™ (s)
+MA, )AL, - MA,, + (4, ~ MA, VM), (s) +Mx,(s)

After some simplifications, we have

() = (@7 (5) 4+ MA, )7 (B, = MBy) ! (s)
+(Qb‘l(s)+MA21)—1(A12+M(S[‘Azz))x2(s) (1,2)
From implementation
(sI=A;,)%,(s) =B,u"(s) + Ay () A %, (5) + A, ¢ (s)Bu” (s)
Substituting the above into (I.2), we have

%1 ()= (671 (5) + Mdly )™ (B, — MB, ) (5)
F(DTI() + MAy )7 (A%, (s) + MByu (5)
+MAy $()A %, (s) + MA, 19 (s)Bu"(s) )
= (¢ (s) +MAy )7 B () + (b1 (s) +MAy )T MB, (u” (s) — ! (s))
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+O() A2, () + (T () + MA, )" MA, 1 (s)Bu"(s) (1.,3)
From (I,1) and (I, 3), we have

% 1(s)=2,(s)
= (@7 +HMA, DT B () + (P (s) + MA, ) MB,(u(s) =/ (5) )
+{(p7 () +MA, ) ' MA,  $(s)B, - d(s)Btu"(s)
= (¢7T(s) + MA, ) B/ (s) + (T () MA, )T MB, (w (s) ~u’ (s5) )
i—(¢, 1(3)'*‘]”/121) I(ZWA“——gb 1(3)—MA21)¢(S)B11¢”(S)
= (71 () + MA, )TN (By = MBy) (u! () =" (s) ) (1.4)
Considéring the matrix which appears the right side of (I.4) and
noting that \
(P () +MA, ) = () = d(OIMI+ Ay 1 ()M 1A, 1 h(5)
we have
(¢ (s) +MA, )" (B, - MB,)
=PSB = MBy 3~ M(T+ Ay p(HM) ™4, ¢ (s)(B, —~ MB,))]

If we want to obtain xl(s):xl(s), the above is identically equal
to zero, Then we have
By, ~MB, =M+ 4, ¢(s)M) ' 4,,6(s)(B, - MB,)
After some simplifications, we get
Bi=M{T+A,¢p(XM) ' 4y, ¢(s)(B, ~MB, )+ MB,
=M1+ Ay, ()M~ Ay, (s) B, -
MU+ Ay (M) (= Ay (M + 1+ A, (¢ (s)M)B,
=M(I"I"Az1@5(5)1]4)_1142195(3)31+M(I+Azx¢(3>M)-le
= M(I+ Ay, (M)~ (B, + 4,,$()B,)
Because the inversion of matrix (B,+ A,,¢(s)B,) exists, we have
BL(B2+A21¢(S)B1>—1=M(I+A21¢(S)M)—l (1.,5)
That is (8), If we select the observer correction matrix M to
make (8) hold for all s, the open—1loop transfer function matrices
in both implementations X, and I, (with loop broken at point “X”)
are identical, The property 3 is proved, Q.E.D,
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