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Abstract, .

In this paper a complete 1dent1f1catnon method for 1nput output b111near
)Systems have been proposed, o '

‘First, the general form of input-output equation has been giVen: and a
input-output - difference -equation correspoands to a class of canonical form
has been obtained Second, a recursive algorithm of the - structural indices'
and the paramters 1dent1f1catxon has been proposed, and the realization

fﬂgortthm lm been g1Ven Tmally. the sxmuhhon oxam;ﬂe is glVen
1. Introduction

Bilinear systems combine the versatility of a nonlinear structure /
with an intrinsic analytic simplicity which in ~many respects makes
their thcory slmllar to ‘that of their 11near COunterparts Makny‘
practical processes, in blology, uoCIOf‘ConomICS and  ecology for
example, may be repreaented Mmofe '\deqwtely by bilinear models

_than by linear ones. Therefore many scholars a/re greatly interested,
Kotta and Nurges (1984) proposed a special class ,0f bilinear
“systems called input-output bilinearﬁ' system, This class is quite
commobn among  real life s‘yétemy‘s,”éi,nd' it is very 'simple for
1nput output’ model. R : ' o

"Tn this paper descmbes a complete procedure to obtain structure

determination, paramters estimation and realization of " an

mput—o’utput bilinear multivariable systems from the mput-dutput :
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. observed data, In this procedure the structural indices and the
parameters of canonical represgntations are obtained simultaneously
by, r;e@qrs;ivega«lgpi’ithm. Compared’ with the algorithm ~proposed by ‘
Kotta and Nurges, the present one is more convenient for
computation, In- add1t1on we also "give a gﬂqn‘e;ra;} “form of the
input-output equation for a class of input-output bilinear systems

and present a realization algorithm of canonical forms.

- 2, The General Form of Input-Output Relatiénship of an
Input-output Bilinear Systems

Consider a bilinear discrete time stochastic system described by
the equations. ‘

x(t+1) Ax(i)+ Z Nx(t)u (t)+Bu(t)+Mw(t) C(2,1)

y(t) Cx(t)+1/(t) - o (2,2)
where x(t) € R, u(t) €R", y(¢) €ER?, The 1nputs{u(t)} and outputs{y(#)}
“are assumed to be stationary vector value stochastic sequences, The
process and measurement disturbances {w(t)} and {v(#)} represent
“noise” sequences with Lero means, mutually mdependent and mdependent
of the input {u(n)}, Tt is assumed that A, Niyi=1,2,0 .,m,B,M,C are

real constant matrices of appropriate dimensions and
Ny )
rank[ o] = dst2eem o a®

The COndlthﬂ (2 3) 1mp11€5 i ‘ } ’
and therfore the system (2 1), (2 2) can be rewrltten oy SRR

: x(t+1) Ax(t) +2D y(t)u (t)+Bu(t)+Mw(t)—- ED u; (t)v(t) (2.5 ),

y\t) Cx(t)+v(t) | A I o)
We call system (2,1), ;(2 2) whxch cat1sftes condl’clon (2 3) the
- input-output bilinear system (1,

If  the linear part. 4, B M, C) of the system (2 5), (2 6) is
completely observable, then it is easy to show that there exists a
transformatmn matrix T such that matrlces A and c becorne canonical
. form through the transformation matrix T, and matrix T can be
given by

H
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- T=E*F SERREE L (2,7)
where F = (CT,ATCT, «++, A" 1TCTYT" is .the &ob'sertvability “matrix, - B*
is a generalized selector matrix (2J, !
We can shown that by a similar way as (2] if the canonical
‘for\m,o/f a given system (A,‘D’x-,i:1,2,"~,7n,B,M,C) is defined as

(A*,D¥,i=1,2,,m,B*,M*,C*) where A*=TAT~', B*=TB,D}=TD,,
M* =TM,C’*‘=CT‘11 and cor‘re'sp,onding selector matrix is £*, then the
general input-output equation which equivalent to (fl*,D?‘ﬂ:l,ZQ*-,rn, B*,

M*,C*y can be ¢xpressed as

, E%E(H 1) zA*E*—g}_(t) +Qu(t) +.$1H‘Z(t) +E"f7(t+ 1)
— A*E* v (1) +K w(t) —'ﬁ’H"r_,-(t) ~ ; (2,8)
i : i . \‘-§1 . ; B H . A .

~whree

Q=E* R— A*E*R,Hi = E*G, - A*E*G,, i=1,2,"+,m, K=E*D- A*E*P

(2.9)
0 (CB
CB 0 ~ lcaB cB
R: .', ..' ‘0. R= .O’ ..°
caB " CB o) ~ |ca=:B - c4B B
0o cD
|lep, 0 - ~ |C4D ¢D S
Gi: M "c .'0 G:: : :‘°o ..o ,Z:]':“’m
cA=2D, - cp, " 0 - lca=p-"cap'cn)
| it ism PR
cM 0 | ~" fcam cu
P=| e e | Pl e .,
ca-rm e o) edrim Tcad cm

T = T,y TG n= 1) ) = @I, T (e 1))",,’
w(t) = (wT<z),'~¥~,zt»T(;+ n~1))7T 7(1) = (vT<t), ~‘~;’,v'T(z+'n—'1))T
2y = TGy, A G n—1)T 1) = 0T, o, T+ n—1))T

zi(t)xy’(t)u',.(t), 7.ty =v(t)u,(t), 1):1’2’"’”‘,,”
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For an arbitrary canomcal form, corresponding selector matrix
E* given provided, then the input-output bquatlons which correspond
to the canonical form can be obtained from (2,8) by straightforward
calculation,

3. lnput Output Equatnon /

If the linear part of the systcm (2.5), (2 6) is cyokmple:tcl;y

observable, we take the generalized sclector matrix

E*= (BT, E],, EDT S ay
where Ej 2(6;{196?’”’ ,"'9c?+(nj—1\,p)T i:1’29"'9p i
Q0100 XD
D :
j

. {n;} are structurc indices of system and T=I*F, then it is easy to

show that by the state transformation T, A*, C* have the following
canonical form, respectively:. '

4t =4y o (5.3)

a;‘itl a,’,‘iz o ai{m'.

{e,

min(n;+1,1) if 1<j
’C(*: (:,"1’” M= 5 (3,45

| B '{mxn(zzn)”_‘ifi>;i
Un wnytorm, +1 " " U ' R
We call system (2,5), (2 6) which ~ matrices A and C with
canonical . form (3,3) and (38,4) respectwely, POPOV’ canonical
form and referred to simply as PCF. -
Replace CE* in (2, 8) with ( 3,50, (3.1 ) respectxvcly, the
input-output dlfference equation which coxrespond to PCF caxi be

obtalned by otralghtforward calculatmn

i : b '
gt ) =2 z Cypri 1 J;(H‘?"])’*‘ P z dsin u:<t+7~1)

jat jusl |

m 17 ) . 3 o
+3 S S by & G- 1 vt a)
ST A . ’ )

I= j=



Reciitsive Identification and Realization Algorithm of

No,2 Input —~output Bilinear Systems 29
| k,,, 1, |
“‘241 Z UsysiV) (t+7-1)+2 Ek:zvlwl(i"ﬁ“l)
i
‘?:Z: Z 2 h.,,;;ﬁ,(t’i*]“‘l) 5319"'31[7 (3.5)

where y,,

of the vectors y, u, 7/, w, 1‘,, 21y Qs,-, Hi,; , Ks,-,

i=l (=1

i V.a Wis Tris Rpis sisis

respectively, '

Biy; s ksjs; are the i-th elements

kand

which Oy, IlsJ , K,;; satisf{y the followmg rclatlonshlps, rcspcctwely

Q:(Qif? i:l,'n,p,» jElyme,m

bnk’.—i+1 "“‘_1» 2 “ula b 1;!‘/:4 ’ F=1,0
Q. = =1 k=il

o e
Hi = (III;;;) k=1,“',ﬂ, i:la"'5n: 1= 19"3""
Ny ‘ K :

‘ d'h it1 >..4 24 U,u:(ls 1+t-i‘ AN PRI A
Hj, = Bt . ¢

l 0 7.>”‘k
K=(K;p) 1=1,,p, J=1,,1

&N
My wjuy = 2 a

’Kil:
l

~where "b;, dl, m; are the i-th row vector of the matrices B*,
M* in PCF, respectively, s;=3

4, The Recursive Algorithm of Structure Determmahon and

A recursive

HEVUCTRREY By 1=1,000 0,
I=1 h=j+1 . o

i>n;

i
My, Sy =0

= ]

Parameters Estimation

algorithm of the structural indices

(3.7)

(3.8)

D:",

the

Parameters estimation is given based upon -the estimates of auto-and

crosscorreltion function of the input and output sequences,

The input and output

sequemnces,

then is

signals are assumed to be

The autocorrelation [unction of the input

statlonary‘ :

Uy (u“«l 2 ,m)
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Ry, () = B (Dt =)

the crosscorrelatxon functlon of the 1nputs U and (k ,=1,,m) is
Ry, 4, () = Bu Du, (2~ ) .

and the first and second order crosscorrelation fﬁnction of input and
the output are :

Ry, u (7’) =’nye W, (t-;j) o Ry, a0 —Fyk (t)u,(t—z)u.(t-— 7)

Multipklyvingn equation (3,5) by u (t~k) and takmg the math-
ematical expectations induces the difference equation for -the
correlation functions , ;
b (norky=Sh (00, D
where STy (k) = |

CRy, u,(k> (k+n“—1)

Ry u, (&) By 4, (k+"s 1y i i Ry gy ey o Ry gy kit mg = 1)

Ry, k) - Ry, k+itp = 1)

Ry, Uyt (0 k) Ry u,u, (O,k.+jzs—1>§ .
R!/pul u (0,k) '"Ry,)ul u 0 k+n,~ 1) «oee

Rypumu,(o,k) -"Ryp umul,(o,k+ns——1)] 3 C(4,2)

T . : e
(K =[yysg a‘”’”sl K : Uspsy i Ofsp,,,“) :

Qs1 “'QSns!I‘ Do s """ Gsnjm
h“” 0es h"’s - hsll,p h81n~,p
. 8 «
Teas H 5 sva i ’ sae ‘ P . (4.3 )
h;ﬂl’l ...h:!'.” R “ h;ﬂ“p ves ”h:'"”sf"]

where we have made use of the facts thiat «(s), v(t) and w(t) are
mutual independent ‘and the disturbances have zero mean. :
Using (4,1) for k=0,1,;N, one can obtain the following
equations ‘ ‘ '
Ry (= Sate-DO, s=1,2,0p ()
where \
Suy(ny = 1) ZERZI‘“} oy - Rym, @ b Eﬂp”z 0) - }—y?u, ‘(n“’—l )

Ry SOREEES Ry (ny - 1) *R“umu, 0y - ‘Rumu; (n,=1)
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Rapu (0 = Ry g(m=1) o Ry (0) v Ry (n-1)

_ﬁzmu,(o) —Ezmu‘(n;-l) _ﬁzpmuz(o) ﬁzmu‘(n, -1)]

| (4,5)
Ry D= Ry, G Ry GENDT =1,
wy =Ry Gy o Ry, GHNNDT  i=1,,m )
R, D= Ry, G = Ry gy GHENT i=1,00,p, G=1,,m

The equation (4,4) means that if the structural index of s-th

subsystem is n, then vector Eysul (n,) is the linear combination of

the column vectors in matrix —S—,,(n,— 1),

- We select the vector accordmg to the order as followmg

Ry,u, 0y - Rypul (0), Rului (Q) u,,.u, (0) leuuz(O) '"Rzmu, )
Rzmul(o) -Ezpmuz(o) E?/Lux a - El/puz (1) Eulu, M "'jﬁumu, (1)
Rzu, (1) o Ry, p (1) Ry, (D Ry, g (1) | (4.7)

when some vector Fysul (k) which is linear correlated = with
former selected vector has been found then m, =k and relevant n,;

(j=1,",p,j5s) are obtained, Naturally, _Z.E—ysul (n,) is not selected,

and —ﬁy,u, (j) (j>n,) are not selected either, and so on, until kaIl

structural indices are determined,
Note: In order to the uncorrelative vector can be selected, large

N is necessary. Gene:rally, Nzn+(m+n-pyny -1, ny=max{n},
] : :

Now a recursive algorithm will be given, For the convemence,

we rearrange the order of vectors as following matrix
S’ ':[R.Utuz (0) Ryklut (1)-,". RZ/ FLd (O) Rypuz (1) ulut (0) Rulul (1)

Rumu,- (O)Rumut ) E‘Rz‘nu;(O)Rzuu.’(l)m “.Rzpmui(o‘)R meux(l)m]
(4,.8)
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~and use O, , " ylprmimp) indicate the matrix formed by selected

vector in according to  priority, where #; is number of vectors
selected from relevant submatrix of the matrix S;, =1, ,pTm-+mp,

Let Q; denote the matrix Q obtained at the end of i—th step of

‘riecur'si"ve scheme, 1f Q, =0 8y, s lpimimp)

then 0,01 =00; © Ryuy 3

where —1—3—,-,,1 is the new vector selected at i+1- th step

Let §,=070, Si+l=QZ‘+1 Q|+1

- provided S, is nonsingular, it follows that

det : SH..I‘:dElt Si det[’ﬁfﬂ(l—'Q,S:lQT) ?;41]': fak % ' (4.9)
1f det S,.,=0 and R, belong to j—th submatrix (G<p) of the
matrix S;, then the structural index ;= H; aqd the parameters of
j—th subsystem ‘ S
- 6,=510"Ries (4.10)
where 6¥:(ai1v1°"“ip’i it Qivm ‘h}l!l '”h?‘lsl' e hivsp h;"l’p D)

| L (4.11)
Note that the permutation order of the parameters in (4,11) is
different from in (4,3). k : o
If det S;;,#0, then we can obtain

S:t+P2RT,,Q;S;'  -P2

hi= - (a2

- P2 P 3 1 :

where , , ‘
' P =R, -0, S 0D R | . L (4.13)
P2= S;t QTR PL A (41

To combine (4,9), (4,12), (4.13), and (4,14), the recursive
agorithm of the structural indices - and  the - parameters of the
input-output equation can bf’e,obtained, start from '

S, =QT( 0-+0)Q(1 0-:0)

until some* R; which belongs to j—th submatrix of S, is added to
O so that det S, =0, then 7; and é,- ‘are obtained, After that we

drop the ‘f?, and add the next vector in 4,7) to Q, until all
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indices are determined. The steps of algorithm see also (3J.

5, The Realization Algorithm of B*, Df and N*

After the structural indices {'?’l,,}‘van(k’i’ktjhé parameters {@j}s{Gijm}}s
{hﬂ,—,k} have been d’etermined,\tyhe A* and :C* of canonical form can be
obtained 1mmed1at1y In this paragraph a realization algorxthm of B*,
D¥ and M* is ploposed

From (3,6), by simple backward subshtuﬂon B* can be acqulred
To be specific, using the equastxon (3,6), let

i=1, j=n,, b, is thaxged,
i=2, j=ny, by, is obtained,
i=p, j=m, b,, ,+1 is obtained,

i=1, j=n,~1, b, is obtained,

izf” jz’”)"'l" b 2 1S Obtdln(‘,d

Sp-
until to
i=1, j=1, " bgy s obtained,
Cd=p, j=1, b, is ontained,

and so on, all rows of B* arc obtained.

 Due to the structure of the equétiOn (3,7) is as same;'as (\3.16)‘.~ ~
ksﬁo,;,by sir“’r"ﬁ,'l"ar pr’o:ce_d’u’r'xe Df can be aéqmred e"qsily. % |
From (2,3)and (3,4), N} can be acquired easily,
NF¥= D¥C*=(Dy0 D 0 DPO) , i=1’;--~,m" |

n, 1 ny

where D§ is j-th column of the matrix D},

§. Simulation

Considering a two input and two output bilincar system
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x(i + 1) =Ax (@) + .ilD‘y(t)uif(t) + Bu(t) + Mq/(t)

S y(t) =Cx(t) + Gu(t)

where ’ ’
0 1 0 0 0 0.2 1 0
-0,1 0 0 0 ' 0,25 0.8 0.1 0,2
4 .1 0,65 B 5 D=
, 0o 0 0 1 0 0 o 1
| 0,67 1,67 -0.25 1 11 1 -1
(0 1 0,01
-2 0 ' 0,01 0.08
D= M= ,oc:[, ]
0,1 0 0,01 0,09
L 0 1 0,01

The input are PRBS with amplitude 0,2 and 0,3, respectively. The
process and measurement noise sequence {w(l)} and {v(t)} are the
normal psedo-random sequences with zero mean and unit variance,
The length of the data is  1000. Taking N =100, £=10"" in the
recursive algorithm, the procédure gives the following results

n, =2, n,=2 ‘

.00000E + 00 ,10000E + 00 .00000E + 00 .00000E + 00 _

e .10102E + 00 ,63101E+ 00 - .61370E-03 - .12200E ~ 03
.00000E + 00 ,00000E + 00 L00000E + 00 L10000E + 01
\ .67664E + 00 ,16322E+ 01 - .24788E + 00 -~ ,10038E + 01,
.93419E - 01 .20909E + 00) J10543E + 01, 56552E - 02
Bi .29813E + 00 J77133E + 00 1L .94636E - 01 .20695E + 00
,19583E + 00 - ,10886E + 00 ," .18610E + 00 L10154E + 01
| .12289E + 01 .79422E + 00 J11848E + 01 — ,96782E + 00
L19760E — 01 L10020E + 01
—~,19638E + 01 - ,91640E —
D2 640E — 02

.16838E + 00 —,13950E -~ 01
L11873E + 00 L96577E + 00

7. Conclusion

‘In this paper a recursive identification method for a class of
bilinear systems have been  proposed, It improved the method

proposed by Kotta and Nurges (1984). In this recusive algorithm,
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the matrix inversion or the value of determinant is not needed, and the

structural indices and the‘parameters are fpund out simultaneously.
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