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Ahstract

In this paper, new improved perturbations bounds for the robust
stability of linear time invariant systems are given, The case of structural
perturbations is considered and it is shown that the bounds are superior to
those reported in literature £13.The bounds are easy to compute numerically.
Several examples are given to demonstrate the new bounds and compare
them with results previously reported.
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1. introduction

One aspect of current development of multivariable feedback
system theory has been concerned with stability robustness to
modeling uncertainties and large parameter variations in the system
dynamics, As known, a principal reason for using feedback rather
than open’ 1009 control is the presence of modeling wuncertainties
and that robustness characterization of dynamic systems, subject to
modeling perturbations is very important in the everyday life of

enginecrs, There are three main approaches which have been applied
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to this problem in the literature,

(i) the time-domain approach, e, g., [2)-(5), which is based on a

state space representation of a systems

(ii) the frequency-domain approach, e.g, (63097, Whlch is based
on the transfer function representation, and

(iii) frequency domain approach which uses a state space represen-
tation of the system (13,0107,

In (1), new bounds on linear time-invariant perturbations which

do not destabilize the system were given for both unstructured

perturbations ( when only a bound on the perturbation matrix is.

given ) and structured perturbations ( when the structure of pertur-
bations is specified and the bounds on the structured perturbations
are given ). It was shown that these bounds are superior to time-
domain stability robustness criteria reported in the recent literature
in two senses, (i) they are less conservative and (ii)they can be
applied to a more general class of systems and perturbations,

In this paper, we present new time-domain stability robustness
criteria for linear state space models, A new algorithm is proposed

which leads to new improved measures of stability robustness. The

bounds arc superior to those based on frequency domain approach,

reported in [1) and can be applied to the same class of systems and

perturbations, It is also shown that a similar algorithm can be

developed which leads to improved frequency domain measures for

stability robustness analysis,
2, Main Results

Assump that a linear time- 1nvar1ant model of a physwal system

is descmbed by the following state equation

(8¢ £ = (A+ A A)x(t) ' ' (1)

where x €R" is a state vector, AER™" is the nominal closed-loop
matrix, which is assumed to be asymptotically stable and 44 is a
perturbation matrix, In other words, all parameter variations and
modelling uncertainties, which are time-invariant, are lumped into
the matrix A4,

As in (17 assume that AA has the structure

AA=S, AES, (2)
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where S,€R"?, AECR!*?, S,ER™", p<n, q<n, and S, and S, are
known constant matrices, With 'no loss of generality, assume - that
rank S,= p or/and rank S,=g, and let the elements of the per=
turbation matrix be denoted by {4E;;},

[AE;| <eje k (3)
where €;;>0 are given, and ¢>0 is unknown, For example, pertur-
bations of sensors/actuators of a closed-loop control system can be
represented in the form(3). For an alternative approach to
sensors/actuators perturbations see [4),

The following bound on ¢ such that A+ A4 remains stable for
all perturbations A4 of the type (2 ) was recently obtained.

Theoremt 1 "'’ Gjven the class of perturbations A 4 described by
(2)and (3), then 4+ A4 is stable if

1

sup #C|S, o= A) S TRk
=0

(4)

where U EC R’ is a matrix with elements given by u;;=¢;;|C]|

denotes modulus matrix, i, e, matrix formed by taking moduli of
elements of («J, and 7 denotes perron eigenvalue of a non-negative
square matrix,

As pointed out in (13, the bound (4)is a significant improve-
ment over recent ones reported, and applies to more general situa-
tions, For example, perturbations of sensors/actuators of a closed
loop system can be represented in the form of (2).

The introduction of structured perturbations considerably over-
comes the conservatism in the robustness tests, comparing to the
unstructured perturbations, Still, one of the most basic need is for
more refined tests and measures of robustness, In what follows we
propose new time domain stability robustness tests for multivariable
control systems,

Let the perturbation matrix 4E be defined by

AE=e()E (5)
where the matrix E is given and e(f) is unknown time-varying scalar
function,

The following theorem gives the sector(€miny €max)i.€., the bounds
on the scalar function e(#) such that the perturbed system remains
stable for all perturbations 44 of the type (2), with A4E defined




Improved Measures of Stability Robusiness for Linear
No,3 State Space Models 59

with (5) .

Theorem 2 If the fbollowing inequalities are satisfied
Aah (W) = eq,<e(t) <emaxr<<inh (W) (6)

where e(¢) is memoryless, time-varying nonlinearity, Am;(+) and
Amax(+) denotes the smallest and the largest eigen;zalue of (), and

W= Q' ((5,ES,)TP+P(S,ES,)) (7)
where the matrix P is positive definite solution of the Lyapunov
matrix equation ‘ - ‘
ATP+PA+Q=0, 0>0 (8)
for all t€00,c0), then the perturbed system remains asymptotically
stable, ‘
Proof, See Appendix 1.

In essence, Theorem 2 shows that if €(2) € (euim,emax) for all t€
C0,00), then the perturbed system remains asymptotically stable,
Hence, the direction ,
| {eE t €€ (€uiny €nax) } (9
is termed stabjlity direction. '

The next corollary is easy to prove, but has an interesting
interpretation, k

Corollary 1 If Aniu(W) is not negative then the bound Cmin ce'ases

to exist and

. eC (= 00, €max) i C10)
If Anex(W) is not positive, then the bound emax ceases to exist and
€€(€min,00) . / (11)

The results of Theorem 2 will be adapted to provide an algorithm

for determining computationally the largest positive number emax and

the smallest negative number €mins such that the perturbed system (1)
With 4E defined with (5)remains stable if ,
| e(t) € (eninseass), for allt€(0,c0) a2

We review the procedure;
Step 1 Using the results of Theorem 2 determine (ema)o and (emax)o.
Step 2 Cecnsider the perturbed system.(S;) as unperturbed system,

i, €.

A:A+(€miu)f‘lSXESZ 7’:1)29““ (13)
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and determine {(emw)j using the resulis of Theorem 2.
Step 3 Check that the closed loop system (Sj) is stable.

If this is the case, return to step 2, If not
i=1
- €min T Z (Zmin>p (14>
- p=0

Step 4 Consider the perturbed system (§;)‘ as unperturbed system,
i. e.
A:A+(6m”)5,131E82 j:l92’°" (15)

and determine (emax); using the results of Theorem 2,
Step 5 Check that the closed loop system (S;) is stable.
If this is the case, return to step 4, If not

- i-1
Cmax = >:a (emax)p ( 16 )
p=0

{ end of procedurc ).

Therefore, using this procedurc, we obtain  scquences (S,) and
(wgp) of closed loop perturbed systems and sequences ({emia)y) and
{(emax),) Of scalars, For each p, the cigenvalues of the corresponding
perturbed systems (S,), iae,(TS'_p) have negative real parts, If for any j

there is an eigenvalue with zero real part, we will not be able to
apply Theorem 2, and we shall have
) i :‘:11 - j=1
€min & >.: (emin)p Ol €pax™— Z (gmux)p (17)
- p=0 p=0
If p—>co, then the Lyapunov equation (8) becomes progre;ivelly

more ill-conditioned as p—>co and the process will have to stop for
some finite values of €max and emin.

Notice that the problem of the selection of an initial value
matrix Q, for determining (eaw)o and (emax)o has not been discussed,
An obvious possibility is to select Qy as Q¢ =21, where I is an iden-

tity matrix, and to use the same value of Q, in all iteratioms,

&, Numerical Examples

Example 1 The following simple second order linear time iavariant
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system was considered in (1]

;u>=§‘“§'“§]xu> | (18)

Table 1 gives bounds of allowable perturbations which do not
disturb system stability, applying the frequency domain criterion (4)
and time domain criterion (6), when the perturbed ellements of E
have different combinations. In this case it was assumed that §,=S, =
I,«s. Table 1 also gives the bounds of allowable perturbations when
the iterative algorithm; eqns, (13)-—(16), is applied, The resuylt’s
show that the new bounds are a significant improvement over the
bounds based on the frequency domain criterion, It should be poin~
ted out that the time domain approach involves checking of only
two inequalities, eqn. ( 6 ), while the frequency domain methodology.
requires that the criterion.( 4 ) be satisfied over the whole range of
frequences, k

Table 1 also gives the %exact” bounds which provide mnecessary
and sufficient conditions for stability mbustness (13, These “exact?
bounds are difficult to compute generally, but in the 2x2 case, they
can be obtained by observation, However, it should be pointed out
that these “explicit” bounds correspond to the ¥worst” case and they
do not distinguish possible directions of perturbations with the samé
structure, This explains why some of the bounds determined by the
iterative algorithm are larger than the “exact” bounds given in (1],

' Table 2 gives the bounds on the allowable perturbations for
perturbations with the same structure but with different directions,
As can be seen, the frequency domain criterion does not distinguish

erturbations with the same structure, but with different directions,
in all cases the bound pq has the same value, while the time domain
criterion gives different bounds for different directions.

Example 2 The following example was also given in (1], The closed
loop stable matrix is deffined by

(-2 0 -

while the perturbation matrix 44 is defined by

78y . T =87 0.5 0-
S A P O A R (20
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For this example
4o =10,08160793

€mig™> — OO

@

Cmax = 0,2263783
Therefore, the results of Example 2 lead to the similar conclu~

sion as the results of Example 1.

Table 1 Comparison of Stability Robustness Bounds for Example 1

Perturbed ar1 4z ary . ars . a ' ais
Elements of A| az1 a2 a1 a a1 it SRR agiag,
1 1 1 0 0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 0 1 1 1 1
€ in —4,236068 |—0,9249506 — 0,9758431 |- 1 -3.302776 -6,495898
€pax 0,236068 0,4305062 0,6558431 0.5 0,3027756 0.2736769
13 0,3295388 0,9150402 1 0.8107933 0,4 0,3713509
Emin — o0 -0,9999991 |- 0,9999999 |- oo — 00 -00
Number of 7 .
iterations 2
—Emax 0.9999172 2.999936 oo 1,999989 1,999516 1,499948
Number of
iterations 78 29 18 178 44
“exact” . ,
bounds 0,3333 1 1 1 0,4 0,3723

Table 2 Comparation of Stability Robustness Bounds for Perturbations with the
Same Structure but Different Directions

S I
of A aj1 Aazz
11\—11 1 1] 1 -1 11 | -1 1 1 -1
11, -1 1| 1 1|1 -1 ] -1 -1 11 11
B B -
emin |~ 4. 236068‘ 0 8090171\‘ 5. 4142140 30901\70“—0.4142136 ~1.600476 |-12,32455
emax 0,236068 0.3090170\ 0.4142136 0 8090171!i 0.2414214 | 0,2761424 | 0,3245553
o 0.3205388] 0,3205388| 03295388 0,3205388 0,3295388 | 0,3205388 | 0.3205388
epin =00 |~ oo -0 1,-033333333\; ~ 00 -1,618034 -8
Tenax 0,9999172 0'33333331 + 00 ! + o0 % + 0 0.6180287} 1,499985 |

4, Conclusions

A computationally efficient method for time domain robustness



Improved Measures of Stability Robustness for Linéar
No,3 _ State Space Models : 63

evaluation in linear multivariable control syétems has been propo-.
sed, Bounds on structured perturbations in the state space models
have been established such that stability of the dynamic system is
assured, The bounds are superior to those reported in the recent
literature; Several numerical examples have been used to demonstrate

the new bounds and compare them with results previously répbrted,

. Appendix, Proof, of Theorem 2,
The proof. proceeds by utilizing arguments of Lyapunov theory. Choose
the positive definite Lyapunov function as :
(%) = xT(#) Px(t) o (AL
where the matrix P is positive definite solution of (8)."

V0 |, = 2T (P(A+e() (S1ES) + (A+ e (S1ES) TPy x(8) (A.2)
= —xT()(Q-e()(P(S{ES) + (SLESHTPHx(H) (A3)

Asymptotic stability follows if V'(x)l(x) is negativedefinite, which follows if
Q-e(t)(P(S1ES)+ (SIES)TP)>0 (A1)
To prove the conditions (6) recall the’following lemma.
Lemma 1'% If R and S are symmetrié matrices and R is positive
definite, there exists a nonsiﬁgular mairix, Y such that
YT(R+S)Y=1+G ' (As5)
where the matix G is a diagonal matrix whose elements are eigenvalues of
Rt S, ” o | 1
Therefore, using the results of Lemma 1, it can be easily concluded
that the perturbed system (S,), eqns. (1), (2) and (,5‘ ) will remain
asymptotically stable if the foll'o‘v‘r)in:g in‘equali,ty is satisfied,
1-e() A Q1 (P(S1ES) +(S1ESDTP) >0 j=1,2,,n CA6)
i.e.
1-eLTI>0, j=1,2,mm (AT
where the matrix 77 is defined l\)y(7) . Bl A
Now under the assumption that Am.x (#)>>0, which is an usual case, it
follows that S
€max = A3k (W) - (A.8)
In a similar way, if Anw(/)<<0 then.
enin= Agia (W) , ; : (A9
i.e, the perturbed system (S;) remains asymptotically stable if
. €(t) € (emin,€max) « A':lO )
for all t€(0,00), ‘
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