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- Prediction Controller
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Abstract

This paper proposes a new method for robust adaptive pole placement
prediction control, which effectively overcomes the instability phenomena

caused by the mismatch of plant model and smith predictor.
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1. Introduction

it is well known that smith prediction control is a valid method
for system with moderately large delay®!’, However its main weak-

ness is its sensitiveness to the variations of process parameters, If the

error for plant model and smith compensator cxceeds a certain degree,
system performance will rapidly deteriorate, and the system may even
lose its stability®*7*?, Recently Chien et al®®’presented a self — tuning
controller with smith predictor for improvement, but they did not
consider the influence of model mismatch in transient state when
system stability can not be guaranteed, In this paper we combine

pole assignment'®? with delay compensation, develop a new control.

method which successfully solves system instability problem under
model mismatch, '

2, A Robust Adaptive Pole Placement Prediction Controller

The system to be considered is a SISO one described by Fig. i
below with expression form h
-
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Fig.1 Block diagram of controlled system

Ay(t) = Bu(i — ki) +Celt) 1)
and control law
Fu(t) = Glw(t) —y(t) —y* (1)) (2)
among them, y* satisfses
Ay* (1) = B(1~ g ¥ "u(?) (3>

where w(t), y(t) and u(t) are reference input, system output and con-
trol input, y* (1) is predictor output, n(t) is disturbance noies and
k. is minimun expected process delay, e(t) is white noise. 4, B, C,
F and G are polynomials of ¢! with orders m,, s, 1., nyand g, and
among them a,=¢o =1,

Combining equations (1), (2) and (3), we can obtain the follow~-

ing relationship between system input and output,

q"'km in jBG

—= e — ) | (4>
A(AF + BG) +q~ ™® G (AB-4B)

y(t) =

Provided the expected closed loop characteristic polynomial is

V(q")=vo+vlq“+"-+vn q'—n" (5)

1f models are completely matched, or fi\zA, §=B, we assign poles
to equation(4)

AF +BG=V (6)
We can see that F and G can be designed based on underlayed process.
In this way, system control sbility will be greatly enhanced, and the
farger kni is, the more obvious this advantage will be,

However, plant parameters are often time-varying in practical

process, which directly leads to A+A and B#B, Thus model mis-
match always exists and system stability can not be ensured, From
equation (4) the system closed loop characteristic equation can

be written as

A(AF +BG) +GP= AV +GP=0 (7)
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where L ) .
P=-AB+AB+ q"km*“ (AB- AB)=(1—-qg~ '™®)(AB- 4B)

=pokpig T A, 0 (8)

=deg(P) <ng,mp +kpia

We can see that, if models are well matched, then, P—0 and the
closed loop poles are near to the expected values, But at dynamic .
situation when process parameters are varying and the estimates have
aot yet converged to their true values, if the model mismatch hap-
pened at this time is serious enough, the variation of P may make
the roots outside the unit circle on the complex z- plane, That is to
say, the system loses its stability. ‘

In order to overcome this difficulty, we first mtroduce a theorem
on system stability. ’ .

Theorem, If the system is open loop stable, when using pole

placement with (6), as long as the assigned characteristic polynomial

V(g~') is variable, we can certainly adjust the parameters v, =1, 2,

-,7,) on-line to guarantee the system stabity under model mLsmatch

Proof From equation (8), P is only concerned with plant param-

eters, therefore the coefficients of polynomial P are bounded, i. e.
|p; |<M M = constant (9)
i=1,2, -

It is clear that, we can adjust controller parameters F(g™')and G(q D)

to assure that equation (7) does not involve the roots outside unit

circle, In particular we rewrite equation(7) as
AQ+rg+etr ¢” ") +GP[ry=0 , (10)

where r;=v,/v,(i=1,2,,n,). Polynomial G is given, v, is selected

to be large enough and v;(i=1,2,+,n,) are chosen in such a way

that polynomial (147,47 '+ -+ . q—n") is a stable ome, which can

be realized by changing F(g~') only. Since the system is opén loop
stable, combining with (9), equation (10) or equitvaledtly (7) will
not involve the unstable roots, that is to say, the system is stable,

According to this theorem, the key is how to supervise in real-
time the degree of model mismatch and then correspondingly adjust
parameters v;(i=1,2,+,n,). Provided the expected placement poly-

nomial is V.(¢"'), we have the following adaptive law on V(g™"):
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Vg~ =f(V.(g" 1), €(t)) C11)
where e(t) is the prediction error of ERLS estimation ,
e(1) = y(t) —dT(1)0(t 1) (12)

and vectors

- P T
0‘"(axy"‘9ana9boy’"9bnb9cn 9Cnc)

¢(t):("y(t“‘1)""9"‘y(t_na)’u(t"‘kmin)9"'9u(t"kmin"nb)’
e(t~1), e, e(t—a)T

Obviously, V(g~!) is a function of V.(g~*) and e(1), (1) is used
as a judgement factor from which we know the model mismatch
range, The form of (11) is not unique, but some conditions have to
be satisfied,

(a) When parameter estimates have converged or prediction
error e(1)—0, V(g )—=>V.(g"").

"(b) When model mismatch appers, which makes the system
tend to be unstable, (11) will automatically adjust V{g"!')to main-
tain the system stability properly.

In summary, we give the adaptive algorithm belows

Step 1 Estimate parameters of polynomials A, B and C of mod-
el (1), where n,2>n, and ny=n,~k are required as idenfication
condition

Step 2 Adjust parameters of the assigned polynomial V{(g™')
with adaptive law (11) according to the variation of &{(t), Smith
predictor is simultaneously tuned.

Step 8 Calculate F(g¢™') and G(g~ ') from equation (8),

Step 4 Calculate control signal u(t) from equation .

3. SimulationiResults

Recently, various different pole/zero placement approaches were
presented' 717, but our emphasis is not in that respect. Here we
consider a pole placement method for open loop stable system, which
simplifies the closed loop transfer function by cancelling stable 4(g™").
From (6) we take

Vg ty=(vo+v,;g7HA™)
Glg ')y =g Ag™")
Flgm')y= (vo+v,07 ') — &:B(g™")

Substituting them into (4) where we have assume A#A4 and fi’#B,we
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- 10

can get

-k

min B(q—1>
"V(] +V1q—l

y{) =gy w(t) -

where g, = (v, +v,)/B(1) gives system zero steady offset,
In simulation example, we choose the adaptive law (11) to be
the following form according to conditi,bns (a) and (b),
vy = eRIecit vy = —0,57

where R is a constant to be determined in experiment,

It can be seen that, when e(z)->0, vo=1 and system has a ‘root

g=0,5. If |e(t)| becomes large when a sudden plant parameter or

time delay variation happens, which means a tendency of system
instability, v, will become large since g, is invariant at this transient

state, and the weight on the root will add to oppose this tendency

(see equation (7)). Thus the system will be stable according to the

theorem proved,
Example. A first order system is now considered
| (1+0.4¢" Dy (1) =0,2u(t—2) +e(t)
Process parameter and time delay change occurs at t= 90 when the

model becomes

(140,47 HDyt)=0,5u(t—3) +e(2)

In order to compare our algorithm with the fixed pole placement

method in which the assigned polynomial V(g™') is set equal to the

expected one V.(¢™!')=1-0,5¢"" without change in overall runing

process, we simultaneously list the results of two algorithms under

the same simulation condition shown in Fig. 2, Fig. 3 and Fig. 4.

From these experiment results we can see that our controller has a
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Fig, 2 Fixed pole placement controller Fig, 3 Our controller
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Fig. 4 Parameter v, of our algorithm

better robustness,
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