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Abstract

A minimum-variance and dynamic-optimum combined adaptive control
’is proposed, to accomplish the optimum adaptive control of both the
stochastic-regulating and the servo-tracking simultaneously for the stocha-
stic servo systems, The whole control algorithm with complete recursive
process demands a rather modified computational effort, and discussion on
its convergence shows its fairly good robustness,
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1. Intreduction

In dealing with the adaptive control of stochastic servo systems,
we met with the stochastic-regulating and the servo-tracking pro-
blems together, Usunally it’s difficult to get to the optimum performa-
aces for both simultaneously, and for systems particularly with lar-
ger parameter variations no effective methods seem to be available
yet,

Reference[2) proposes a separating design, which can obtain
an optimum regulation but not the servo, The latter which is domi-
nated by fixed pole-assignment usually shares no optimum perform-
ance, especially for time-varying systems when unreasonable control
signal may be synthesized because of the discrepancy between the

fixed pole-assignment and the varied systems' ?’, Besides, the design
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requires an overall parameter estimation, which seems to be a heavy

purden for fast moving systems,

In this paper, a combined adaptive control. algorithm for both
the minimum-variance stochastic regulation and the optimum servo-
-tracking control is proposed. The algorithm with only partial para-
meter estimate and complete recursive process demands a rather modi-
fied computation and is then more suitable to the fast moving sto-

chastic servo systems,
2, Control Algorithm

Notations of differential operator and its coefficient vector are

defined as follows

A=a,+a,qg" + - + a, a ™, a,#0

a

"=a,g7 fa,qt+ e + a, g™
¢

A :an a, ...a\n jT

a

where ¢”' is the backward shift operator, n, the degree of 4 and 4

is said to be monic when a,=1,
(1) Basic control law ’
The stochastic process, that be controlled, is described as
Ay(t) = ¢~Bu(t) + Ce(t) (1)
where y(2) is the output signal, u(t) the control signal and .e(?) the
white noise with zero mean and unit variance, A is monic and the
time delay d>1. ' | Co '

A compound control is employed as shown in Fig. 1, where u,(1)

‘e(t)
£ c
F, a
_u.(t) __,G,,g, 4 q_dB + 91
T, — T

Fig, 1 Basic control structure
is the reference input signal and F,, F, and F are monic. Let
H=F,G,G+G,F.F 2)
P=F,F,
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the control and the closed-loop systems’ output can be obtained as

H G
u(t)=-FP u, (t) - ~1-;y(t) (3)
-d «
BH
§(t) = —————— u, (D) + ——e(®) (4)
P(AF +q “%9) AF +q “BG

In order to get the minimum variance control of the second item

on the right side of eq, (4), the control garameters can be decided

as follows!t?3!
AF+4q¢BG=C (5)
P(1)
H=-—n
B © (6>

where P(1) and B(1) are the sums of the coefficients of T and B
respectively, and their combination in eq. (6) insures a unit trans-
mission in systems’ steady-state response, The condition to get uni-
que solution from eq. (5) is ny=my+d—1 and ny=n,-1.

Substituting (5) and (6) into (4), we have

P(1)B

y(t)=——————B(1)P

u,(t—d) + Fe(t) 7))

where P dominates the servo-tracking property of systems and will
be discussed later,
(2) Recursive formulation
Multiplying both sides of (5) by y(t) and substituting (1) into
it yields
FBu(t—~d) +GBy(t—d) + FCe(t) =Cy(t) (8)
Let D=FC (9)

% (t—d) =Bu(i - d)
y (t-d)=By(t-d) (10)
7 (t=d) = Fu(t—d) +Gy(t — d)

and notice that F, C and D are monic, eq, (8) can be further deduced

as

2y () — a(t=dy-2D’e(t)= F/ 2 (t~d)+ Gy(t—d) + By (t1—d)
= 2C"y(t) + 2e(t) (11)
By substituting predicting error for white noise, i, e,
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e(t) = %{ Coy() — uCt—d) - 2D7e() I~ o"(1) 8 }

where
0=C fl"' fnfgo ...gngbu eve bnb c, ...Cnc jT |
o) = Cu(t=d=1) - ult=d=n)y (t=d)y (t=d=n) | (12)

L V= d) e V(= d =) = 2y(t=1) e = 2pCt = )T

the Extended Matrix Method can then be used to estimate the para-

meter 6 from eq. (11) directly'*’, Many applications have reported
its good convergence, As the estimation of A has been omitted and
the control parameters are predicted with process parameters direc-
tly, the above algorithm presents a rather modified calculation,

(3) Optimization of servo

From eq. (7) we see that the servo characteristic of the closed-

loop systems is dominated by P, or say, that y(¢) is the function

of P and should be represented as y(t; F)

Consider the criterion function

B ) , . .
I(P) = — X (y(t, P)—-u(t—-d)]? (13)
2T 15T ,

where T is a constant, approximating to the settle-time of closed-
loop systems, Let

d 1

k —
— 3 Gyt Py-u =)y (14)
dP

2T  tap-
Then, we can optimize P with the criterion function being minimi-

zed as follows!®!
‘?mb 1 =?n - lnLan ( 15 )

where I, is the step length and L, the modification matrix, which
can be determined by the DFP approach,

Taking derivative with respect of p, (;=1~n,) on both sides of
(7), we have

dy(t, I;) 1

— B ‘
= - -7 R, Y+ F.(t—1 (16)
d?i P [ y(t 1y P) B(l) ur(t d) e(t Z)j

Substituting (16) into (14) and noticing that Fe(t-y) is uncorrelated
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with y(2, P) and u,(t—d) so that from the ergodic property of sta-

tionary stochastic process and under an enough large T

%_ Cy (t, P)=u,(t=d)IFe(t=i)=0

1
- T i<p-T

thus, we have

-y(t-1, _i;) "
1 k = —y(t =2 P)
= — -u, —-d H
W=os 3 (g6 P)-u = D) :
—y(t—np,?)
L
. e |} | Can
B : | '
1

(4) Combined optimum adaptive control algorithm (COACA)

Given, Predetermined servo characteristic P, and initial para-

meter 6(0). '

Step 1 Calculate & (t=d), 3(t—d) and T(t—d) from (10) by
using /é(t—l) 6b.tai’ned in last step, and then estimate
§(t) from (11) by Extexided Matrix Method,

Step 2 Calculate ﬁ from (6) and then u(?) from (3), by using

5(:) obtained in last step.
Step 8 If t<k, return to step 1;

If =k, calculate W, from (17) and then ?,,“ from
(15); substitute ?,,H for _ﬁn, let k=k+T and n=n+1,
and return to step 1,

3. Convergence Consideration

Only a brief discussion on convergence is given here since the
paper space limitation, For more. detail, see reference (6], '

During the initial stage of systems’ performance of, particula-

rly, in time-varying systemks when the parameter estimates have not

gonyerged at its real value, i, e, B#ﬁ, eq, (17) becomes
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~-y(t-1, P) }
~ 1 5 — =
W=—= % (yt, P)=u(t-4d)] y(t -2, P)
TP itip-r :
~y(t=mn,, P) )
1
B
+ A~ ur (t"'d)
B (1)
1

Though W is diverted from W due to 3, it can be seen from
the Fig. 2 obviously that the algorithm will still converge as long

as the deviation between W and W is less than 90 degree, Only the
descent is not the speediest as
shown in Fig, 2 by line ab’ ¢/,
comparing with the dotted line
ab which represents the spe-
édiest descent, However - most
experiments have shown the
satisfactory convergence even

under a larger deviation bet-

T(fnu)

ween B and B during systems’

initial stage of performance,
4, Simulation

A non-minimum phase pr- Fig, 2 Convergence analysis
ocess is chosen for experiment ,
as follows
(1-0.7847" +0,28¢7*)y(#) = (0,08¢™" +0,21¢*)u(t) + (1~ 0,2¢"* e(#)
By using square wave as reference input signal and setting T =40}

which is of half period of the signal, and the predetermined servo
property —IT(,=E—0,9 0,237, the system’s dynamic résf)dnse, the

optimizing process of P and the descent of criterion under the com-
bined optimum adaptive control algorithm are shown in Fig. 3.
Where, after about 200 sampling steps, the system achieves both

the minimum-variance stochastic regulationand the optimum seryo-
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Fig, 4 Simulation result under EST

is




No.3 Servo~regulation Combined Optimum Adaptive Control
S 71

i,

g,

P =(-1,14 0.33]7,
,’Fig.4 shows the response of the system under EST Controj (s

where the regulating variance is clearly larger than that ip Fig a3

5, Conclusion
The approach developed in this paper achieves both the minjpy.
um-variance stocharstic regulation and the optimum servo-tracking
control simultaneously for the stochastic servo systems, The approach
presents a modified computation and fairly good robustness, which
is then more suitable for the time-varying and fast moving stochs-

stic servo systems,
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