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Abstract

A detection - oriented Kalman filter is employed for on-line estima-
ting the arrival times and heights of a Bernoulli -~ Gaussian impulse sequence

which is observed in the Presence of noise. The results are illustrated
by a simulation study,

1. Introduction

A well -known problemn in statistical communication theory,
control theory, reflection seismoloéy' and some other fields is the
Problem of detecting the arrival times and estimating the heights of
a randomly arriving impulse sequence which is observed in the
presénce of noise (1, 2. KW_akerr;aak presented an estimation
algorithm for this problem usihg Rissanen’s modification of the
maximum likelihood principle [33. Mendel, Korm?l‘o and Chi have
discussed this problem through their work on seismic deconvolution
2, 4, 5). .

All their methods are o&'f—line in nature. In this 'p_aper, we
develop a modified Kalman filter, named the “detéCtion—oriented
Kalman filter”, for on—line estimation. Our method js motivated
by some schemes which detect deterministic sudden Change§ in
dynamic systems (6, 7). The performance of our algorithm s
demonstrated by computer simulation.

2, Problem Formulation

Our starting point is the following discrete-time convolution
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model; :
&
z(k)y = p(k) ¥ v(k) +n(k) = 2 v(k=i)u(i) +n(k), (1)

where k=1,2,,N_ In Eq, (1), uCk) is an input random spike
sequence which is to be estimated; it is assumed to be Bernoulli-

Gaussian, and can be expressed in the following product form.

u(k) =qCk)r(k), = 2)
in which g(k) is a Bernoulli sequence with parameter 4,
A 2 g(h)=1
P, k = p L)
ab={1_, . oo (3)

and r(k) is a zeto-mean, white and Gaussian sequence with vari-
ance of, Sequences r(k) and g(k) are statistically independent.

In Eq.(1), v(k) can be viewed as the impulse response of a
linear, time — invariant, discrete —time system. Additionally, measu-
rement noise n(k) is assumed to be zero— mean, white and Gaussian
sequence with ‘variance o2, and is statistically independent of sequ-
ence u(k), ‘ :

. The problem of estimating the arrival times and heights of
Bernoulli — Gaussian sequence u(k)=g(k)r(k) is; given the impulse
response data v(k) (k=0,1,-) and the statistical parameters (4,
o}, 0%), detect the Bernoulli sequence {g(1),-,q(N)} and estimate
~ the amplitudes {r(1),-,7(N)} by processing all of the observed
data {2(1),+,2(N)}. In the case of real—time applications, however,
in order to estimate g(k) and r(k) (k=1,2,,N), we can only
process all of the observed data up to f {z(1),+,2(k)},

In this paper, we apply a modified Kalman filter for on-line
detection and estimation. ,SO the convolution model (1) must be
realized by a suitable state—variable model. when v(0)#0, the
state — variable model is,

x(k) =@x(k—1) +ra(k)r(k), ' (4)
zCk) =h’x(k) +n(k), (5)
where x(k) is the nx1 state vector and x(0)=0, @ is the nxn
transition matrix, y is the nx 1 input dist-ibution vector and &> is
the 1xn observation vector. The triples {®, y, h} as well as the
order n can be determined via the approximate realization technique

by processing the sequence v(k) (8], sq
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K Ofy=v(k), (k=0,1,,N) (6)
in which »(0) =% y+#0,
Sometimes, however, v(0) is zero byt v(1)#0. At that case, the
convolution model (1) can be approximately realized by the follo-
wing state— variable model (8J.

x(k) =Px(k-1) + gk~ 1)r(k~1), (7)

z(k) =h’x(k) + n(k), (8)
in which

RO ty=y(k), (k=1,2,-,N) (9)

and v(1) =k y+0, In the case of real —time applications, in order
to estimate g(k-1) and r(k-1)(k=1,2,+,N), we can only process
all of the observed data up to t,: {2(1),,2(k)},

In the next section, we first discuss the case of v(O)#o, then
the case of ¥(0)=0 and v(1)+0.

8. Detection- Oriented Kalman Filter

The on-line detection procedure presented in this paper is to
employ a modified Kalman filter, named “detection - oriented
Kalman filter”, for state-varjable model (4) and (5). The scheme
is, in order to detect whether g(k)=0 or 1 at each valye of t, to
run first' the Kalman filter to obtajs the innovation ;tklk—l) and
then to compare z*(klk=1) to a certain threshold, If 22 (k]k-1)
exceeds this threshold we set 2(k|k)=1 and sét the input variance,
which appears in the covariance equations, equal to E{u®(k)|q(k) =1}
=E{r*(k)} =0?; otherwise we set g(klk)=0 and set the input vari-

ance equal to E{u*(k)|q(k) =0} =0, The equations of the detection -
oriented Kalman filter are as follows;

» Innovation,

ZCklk~1) = 2(k) - B $(k|k=1), (10)
Z(klk-1) =@ 2(k=1]k-1), (11)
+ Detector,
a(k|k) =1
2t (k|k-1) % T(k)., (12)

a(k|k)
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. Filter:
Sk = 2R K -1)+K (k)2 (k k= 1), (13)
k,(ky = Po(klk=1)hngt (k) (14)
. Covariances;
n () AV, { Z2(klk=1)} = W Pklk- 1+ of, (15)
P,(k|k-1)=OPk—1|k-1)D", t q(k1ky =0
P(klk-1)= (18)

P, (klk—-1)=®P(k—1|k-1)D’ +02yy’ :q(klb)=1,

P(k|ky=C(I-K (k)R JP,(k|k-1), C17)
where k=1,2,-+,N, and T(k) is the threshold.

We now determine the appropriate threshold T(k) via the
maximum a posteriori (MAP) detection rule (9), The likelihood
function for defecting g(k) given :(klk—l) is

L{g(k)| (k| k- 1}ocpCzCkl k- 1) 1aCkIP,CaCk)),  (18)
Under the Gaussian assumi)tions described in section 2 and the
known estimétion sequence {a(lll), 2(2,[2),---,2(k—1|k—1)}, we can
assume that p[;(klk—l)lq(k)] is an approximate Gaussian probability

density function; i. e.,
~ 5L ~
pLzCklk=1)|q(k)I=02nn, (k)] “expl—22(klk—1)/2n,(k)) (19)

where we have used the fact that innovation ;(klk—l) is  zero-—
mean. The MAP detection rule is (9],

2(k|k~1)|a(k) = 1IP,Cq(k) =
I (k) = 1n 2L 2CELE=D]at) = 1P (a(k) = 1) % 5.1 7613

pCzCk| k= 1)|q(k) = 03P, Cq(k) = 0 )

We have,

Theorem 1 A real-time maximum a posteriori threshold detector
for state - variable model (4) and (5) is Eq. (12), in which the
threshold T(k) is

T(k) = v2(0)o EGk)CL + E(k)]{ln[1+ g(lh ]—zln(l—fr)} C21)

where

n,(k) WOP(k—1|k-1)D'h+ 0%
£k 4 - [

s 22)
v2(0)o? v*(0)o?
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Proof; From Eq. (19), we see that

]ll-—.p[:_;.g_k_lk_i ]_)Iq_(.l.c_)__: ]j - —1—111 [ __”n(k) & ]
pLaCklk~1)gCk) =03 2 7, (k)

1, _[ i ]
+ 5 @ (klk-1) (8 ‘———-m(k) . (23)

Substituting Eqs. (3) and (23) into Eq. (20), we find that the MAP
detection rule is

7, (k) =1, (k) +1 [_nu(k) ]

1 ~
k=2 (k|k- =
AR = k- D) iy et T

aCklk) =1

rln( =) %— 0. (24)

-

aCk] k) = 0
From Eqs. (15) and (16), we have

MoCk) =K Py (klk—1)h+0} =B OP(k~ 11k~ 1) h+ o,
and
M) =k P (klk-1)h+o0? =W OPk-1k-1)O h+v2(0) 02 + ol,
where we have used the fact that v(0) =4 y=y/f, Since nu (k) = 1, (k)

=v*(0)0? >0, from Eq. (24), the MAP detection rule can be ex-

pressed as
2(k|{=1
st Mo (B) (k) g n.€k)
PCklk - — —_— —_—
= =) e n1Ck) —n,(k) 1 ﬂo(k)]
acklk) =0
4 .
~2la ( =7 ) } ;
or
E(klk\)=1
~ ) 4 { 1
SEE-D S 00 SR+ ,ln[ R ]
qklky=0

—-21n( l—t—fth)}
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where we have used the facts that #5,(k)=n,(k)+2v2(0)0? and

E(k)Qn (ky/v*(0)of,
After we have detected whether ¢g(k)=0 or 1 at each value of
t,, i. €., after we have obtained tii\(klk), we immediately have,
Theorem 2 The real-time maximum a posteriori estimate of
u(k), w(k|k), for state—variable model (4) and (5) is

Bkl k) = A(k) 2kl k=1), (25)
where Ak) = gkl )wC0)o? nzi(k), (26)

Proof, When- g(k) is known, the maximum a posteriori (or
minimum — variance*) estimate. of wu(k), E(klk), is [2,10]

0 : g(k)=0

#ElB v(0)o2n 1 (k) 2Cklk=1) + q(k) =1

where n(k)=V ., { 2(klk-1)}. When g(k) is unknown, however, accor-
ding to the separation principle of maximum a posteriori estimation of
Bernoulli— Gaussian sequence (2, 11], we first detect the maximum a

posteriori estimate of q(k), g(k|k), then compute the maximum a

posteriori estimate of u(k), ;?(klk), as
u(kiky = qelk)v(0) o 7' (k) 2Ck|k-1).

We can easily {ind that our detection — oriented Kalman filter is
an adaptive filter,

- For state~variable model (7) and (8), following the same proce-
dure, we can obtain the same results by using »(1), a(k—llk) and
;:(k—llk) instead of v(0), /_(;_(klk) and ;;(klk), respectively, for the
state - variable model (4) and (5). In fact, we have

Corollary 1 For state-variable model (7) and (8), a real-time

maximum a posteriori threshold detector is

ak-11ky=1
22 (k| k1) i:: T(k), (27)
- -  qG=1lk)=0

*When sequence ¢(k) is known, under the Gaussian assumptions
described in section 2, our case is the Gaussian and linear model.
Hence, the minimum - variance estimator of u(k) leads to the

maximum a posteriori estimator of u(k).
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where threshold T(k) is
T(k) = v*(1)o? ERYCL +E(k)) 51n[1+ e ] - 2ta ( _L)} 28
t E(k) 1-4

in which

WOPk—-1|k-1)Dh +0?

7, (k)

Ekya = A (29)
v:(1)o? v2(1)o}

and, the real-time maximum 2 posteriori estimate of pu(k-1),
plk=11k), is
uCk—11k)= A, (k) 2Ck|k-1)= gCk=11k)v(1)o? N7t (k) 2Ck| k- 1), (30)

4, Simulation

As an example, we use a pseudorandom number generator program
to generate the Bernoulli- Gaussian sequence (for which A=0.1,
0,=0,25 and N=150), This signal is convolved with the fourth—
order ARMA system described by

0,91003 - 2,42032"" +2,34082™* - 0,82997z"

V(z)=— Z
G2 1-3,31982"" +4,514627% — 2,95112 * +0,79699z * '

to which zero- mean, white and Gaussian noise with 0,=0,03 is added
to produce the observation data.

Our detection —oriented Kalman filter is applied to these data.
The simulation result is depicted in Fig. 1, in which circles mark
the true impulse amplitudes and bars depict the corresponding esti-
mates. As one can see, there are five missed detections and one false

alarm in Fig. 1,

Kb, Bk/E)
0.4 : 4
0,3
o et .
9 5 o &6 [ 8] 106 ra' TR
- 0,11
-0.2 .
&

Fig. 1 Simulation Result

5. Conclusions

The problem of detecting and estimating a Bernoulli~ Gaussian

sequence is an unusual and rather difficult problem. The detecton —
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oriented Kalman filter presented in this paper is a suboptimal on-—

line algorithm. Obtaining more effective on—line estimators is still

an open problem.
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