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Abstract

Using input-output plant model, a new LQG self-tuning controller is derived,
where the solution of the Riccati equation and spectral factorization are not re—

quired,

The design of optimal controllers for the stochastic LQG ( Linear-Quad-
ratic-Gaussian) problem is well established, using frequency and time-
domain theory (1,2,3), The treatment in the frequency-domain using the
Wiener-Newton approach requires a time consuming spectral factorizatjon.
The algorithms using time-domain theory rest on the so-called certainty
equivalence hypothesis and the solution of the Rjceatj equation is neces-
sary. LQG controllers are wildly used elsewhere but have not been applied
in self-tuning systems till now, except in minimym variance and genera-
lized minimuym variance forms which are based on only single-stage cost
function minimization. This may be due to the large computational load of
solving the Riccati equation and performing the spectral factorization for
LQG controllers. In this paper, a new version of a LQG self tunner is
presented, in which numerical problem of solution of the Riccatj equation
and spectral factorization are avoided.

An input-output model of the plant may be represented in discrete
time as

A(2" ) y(1) =27 XB(z"Hu(t) + C(2~1)E@) (1)
where y(t) is the measured variable at time t, u(t) the control Signal,

A(z™') and B(z7!) are polynomials of the backward shift operator 27!, & is
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the 1ntegral time delay of the plant and éj(t) is a random variables with
zero mean; here the noisc polynomial ¢ (x ') is assumed to unity, i.e,
c(z")=1.
By using the equation
1=AE 4 27%F 2)
Astrom obtained the result that the minimym variance predictor over k

steps is given by

a(z+k/t)=BEu(t)+Fy(t) (3)
The minimum variance control law was derived by minimizing the
criterion,
J=Ely(t+k)2)
Therefore, minimuym variance control can be considered as one-stage
cost function stochastic optimal control,
In order to derive a more than one-stage cost function coantrol law, the
authors extend (2) to the following form (5]
1=AEy+ 2 5VF)y (4)
where polynomials Ey and Fy are of degree k+ N—1 and n—1, respectively.,

Using (1) and(4), the optimal predictor over k+ N steps is given by
g(t+k+N/t):BENu(t+N)+FNy(t) (5)

An auxiliary output ¢ (1) =P(x")y(t) where P(27 1) =P,(2"')/P, and P(Q)

=1 is introduced here and then it will be included in the cost function,

Suppose w(t+k) and w(t+k+1) arc the future setpoints, moreover,

define e(@+j)= w@+j)— ¢A(t+ i) to be the predicted future error. Then
the quadratic cost funclion for two-stage case is established in the follow-
ing form

]:i,R +u’Q_u (6)

where diagonal matirices R and Q are the weighting matrices on ¢ and u ,

The vectors ¢ and « are of dimension 2 in the two-stage case,

€ =Let+ k), 6(i+k+1)]':ﬂ—§ , u=Lult), uw(t+1)3 7)
when the auxiliary output ¢(¢) is used to replace y(t), the equation
(4) becomes
P - ) Fy, :
i = By g KN N =0, 1,2, u- 8
7 vyt 2 ar. 0 5 (8)

d

The polynomials E y and Iy are of degrees k+ N-- 1 and max{n+0(Ps)-1,
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6(Pd)-k—N}, respectively, Multiplying (1) (essumed C™Y)=1) by

Ey(z™!) and combining (1) and (8) give

¢t +k+N) = BEyu(t + N) -f-FNy(t)/Pd+EN§<t+Ig+N) N=o, 1, O .. (9)
For the two-stage cost case, N =g and N=] shoyld be considered,

Obviously, the optimal predictors are
$t+k/) =G, u(t) + Fy y(t)/p, (10)

SU+k+1/D =G, ugt+1) +F, y(1) /P, (11)
where G=BE, is a polynomial in z ', it may be written as

Gy=g,, + Gy, Glzglo+gl1z—l+GfZ~Z (12)

Combining (7), (10) and (11) gives the predicted futyre error vector

| &

as e =H—G'__u (13)
where
w (E+k) =G u(t—-1) = Foy (t) /Py h,
H= . == , G“[ &op O J
w(t+k+1) -G u@i-1) -Fy(t) /P, h,y E11 &1

Substituting (13) into (6, the cost function can be written as

J=H-Gu)'RH-Guy' '+ urQu C14)

The controller is chosen to minimize the quadratic cost function J and
the optimal contro] js given by
u*= (G'RG + Q)" 1G’ RE (15)

Although the optimal control vector u* is obtajned here, it is worth

mentioning that this control layw must be used in the receding-horizen sense

control law applied for all timel(4],

Define the weighting matrices

R:?“O(‘ 0:3(‘“0&

0 7, } 0 q,
then, solving for the control Signal #*(1) from (15) yields
v = SWEDYSROAY 6, Fyrs, Epyyr,
D+ (8,G{+8, Gy D4 (S,Gl+ §,G7) 1

(16)

where D, §, and $, are given by
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D=det(G'RG+0Q) = (r, gio+a, )(7'28'%0'*'42)'*'7'2428'%1

S;1=71800 (T2 g0 +45), S,=734, 814
The controller obtained above takes a feedback form; the block-dia-
gram of the feed-back system can be drawn as Fig, 1 according to (1) and

(16).

8O i/ g
S,wit+k) boon | 1 u(f) Lk A(z-ll) ‘_‘I-;l _y(t)
+S,w(t+k+1) _T D+ (8,54 48,6}~ B(z"')
F

— 1 (S, Fy+5:F)P,;

Note:In this figure,D+ (S,S{+ S,G{)Z ! shouldread D+ (S,G{+S,GHZ 1
(S)Fo+S,F)Pd should read (S,Fy+S,F.y/Pd
Fig.1
The closed-loop transfer function may be derived by combining (9)
with the control law (16) and the plant, (10) and (11). The system output
y(t) is given by
y(t) = {75, wt+k) +S, w (t +k+1) B+(D+ (S, G} + S,GNHzTMIEMY/T(z™Y)
where T is the closed-loop characteristic equation,
T ') =0q, ("28t0+q:) ~7; g2 81081123 A+ (S, +S,2)PB, (17)
To calculate the steadystate value of the output, consider the case
E(t) =0. Using the final-value theorem, the steadystate output is then giv-
en by
y(o0) = (S, +S,)B(Dw()/T (1),
T =(S, +S)PA)B1) + U g, (ragho +92) — 720481 08,1 JA),
Considering P(1) =1, zero steady-state offset for step input will require

that the elements of R and Q must satisfy the following relationship

g1 (72 g30+G2) =73 45 810811 (18)

(18) means that three elements ¢,, g, and 7, .can not all be chosen a prioris
in practice, two of them are selected in advance and the other isdetermj-
ned by (18).

Self-tuning approaches are applicable to system where the structure is
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known byt the parameters yaknown, It is nonethloss possible to use a re-
cursive parameter estimator to obtajn cstimates of th epredictor parameters,
Here the recursive instrumenta] variabl(; method is used, where the jnstry-
mental variable is selected as 2() =(u(), -, u@-1), ), and the algori-
thm of the LQG self-tuning controller is given as follows

Data; Choose P, clements 7, and two among 7,, ¢, ¢, of the weight-
ing matrices K and Q,

Step 1, Estimate the parameters Gy, Fy and G|, F, using recursive
instrumental variable and the predictor models

Py+k) =G, u@t) +F, y(@)/P,, Pyt +ky =G, u@t) +F, y(t- 1)/P,

Step 2; Calculate the value of D, Sy, S, using

D= (r, g}y +q,) (r, 810+ qz) +7, gy8?

Si=71 g00(T; 820 +q,), 52:7’24218111’
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where one of elemonts Ty, 4y, g2, which has nol been selected in

advance, is determined by (18).

Step 3, Calculate the control singal from (16), where G§, G/ can he
easily obtained from G, and G,. Return to Step 1.

A comparative studyfor the case of underestimated time-delay is pres-
ented in Fig.2, the plant model was described as

G(s)=e™/(1+10s) (L +55)
which was sampled at 2-second interval. Both LOG and GMV controllers
assumed a dead-time 4 instead of the actyal value of 9. It is found that
the LQG algorithm presented in this paper provides good response in the
case of underestimated dead time but the GMV self-tunner perform
poorly,

After extending the equation (2) to the N-stage case, a new LQG self
tuning algorithm based on the two-stage cost function minimization and the
input-output plant model has been presented, The solution of the Riccati
equation or spectral factorization is not required for this approach. The

result derived above can be easily extended to the N-stage cost case.

References

(17 Astrom, K, J,, TIntroduction to stochastic control theory, New York,
Academic Press, (1970) ,

€23 Astrom, K,J,, Design principles for self-tuning regulators,in proceedings of
International Symposium on Adaptive System, Bochum, Germany, (1980,

(3) Astrom K_J,, and B, Wittenmark, *Analysis of a self-luning regulator for
nonminimum phase systems, presented at the [FAC Symposium on Stochastic
Control, Budapest, (1974) .,

(42 Clarke, D, W,, P_P. Kanjilal and C, Mohtadi, A generalized LQG ap-
proach to self-tuning control, Int,J, Control, 41:6, (1985) ,

(51 Wu Jie and Ma Yuxu, Self-tuning controller based on optimal control, pre-
sented at the IEEE Asian Electronics Conference on Tndustrial Tlectrorn-

ics and Manufacturing Technology, Hong Kong Spt,, (1987) .

F g AT LQG | g R4 il

I W% e * #
CPNERAC TR E®A)  CEMMTASERNS 8 BRI, A
WwoE

AR T =TT LQG B EP IR, 8 R TR P i B S A0 0 L2 % uJ\f H LA
Bitry, REIEL TR Riccati FRAGHETHE FH M, Wit ERA AW, BTEA.





