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Abstract: A design methed for robust controller is developed and applied to a large—scale distilla-

tion plant. This method produces a coniroller which meets closed—loop stability, regulation, tracking
and s
at the same time possesses the robustness of these performances in the face of the structured model-

ome transcient performance specifications for the approximate model on which the design is based

and
ling uncertainty.
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1. Introduction

Classically, allowance for modelling ﬁnccrtainties has been attemptcd by ensuring adequate gain
and phase margins for the approximate model in the frequency domain. It would ciearly be advanta-
geous, however, to be able to assess the effect of modelling errors in a more precise manner and, in par-
ticular, to be able to confidently assess both the stability and transient performance of the implemented
system in terms of the closed—-loop dynamics of the approximate model. This objective is achieved by
the robust design which will be presented in this paper. We will concentrate on the situation where the
siep response of the plant is reliably known.and hence the modelling errors are well-known (i.e. struc-
tured) and characterised in the time domain in terms of the error between the unit step responses of the
plant and its approximate model. A design method is presented such that the designed controller meets
stability, regulation, tracking and some transcient performance specifications for the approximate
feedback system. At the same time system possesses the robustness of thesc specifications in case of the

struciured modelling uncertainty mentioned above.
2. Problem Formulation and Resclution

Let a controlled r~input m--output linear system G be described by the plant step—response matrix
Y(0) estimated reliably from plant tests, where the element Y, (t) is the response from zero initial condi-
tions of the ith output to a unit step in the jth input. Given the data Y(t), supposc that an approximate
model G, of the plant is derived from Y(#)with a step—response matrix Y ,{tjand Y Y. Qur goal is to
design an m—~input r—output linear forward—path controller K in a unit feedback configuration such
that the feedback system meets the required ciosed—ioép stability, requlation, tracking and dynamic
PerloTmance specifications for the approximate plant ¥, and at the same time, these specifications are
glarantesd for the real plant ¥

Let @ be the icast common muitiple of minimal polynomials of references and disturbances. It
follows from the robust servomechanism theory (Chen, 1984) that the rcgulatlon and trdckmg with sta-
bility is solvable for both G, and G only if
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(1) r=m, and
(2) None of G 4« and G has the same zeros as those of @
It is assumed that conditions (1) and (2_) hold throughout this paper. Thus, the regulation and tracking
with stability is solvabie for both G 4. @0d G and, furher, the controller for this pburpose must have the
following form. K=K K ,» Where K =@ ', and, K, simultaneously stabilizes & 'c ,and P G .
In view of these observations, the design problem becomes a robust stabilization problem witﬁ Vr'sspect
to the structured modelling uncertainty, (Y-Y,). Our strategy to solve such a problem is first to con.
struct a stabilizing controller K in the parametric form, K,=Ky(Z), for ® 'G 4 Wwith the expected
closed~loop poles and free parameters z;;, and then to determine an optimal Z” in the sense that it min-
imizes some robust stability measure. '
In order to construct a stabilizing controller f;)r o 'G 4> We write the strictly properﬁ'! - TG‘ (ina
left coprime polynomial matrix fraction 4A7'B such that A‘ is row reduced with row degree.s &, 2 ' )
2 2q and the proper controller X, is also e){pressed in a right coprimé polynomial matrix fraction
K,=YX 'with column degrees By Zp, = Zp,  and M, = —1, where § is the controllability in-
dex of ®'G,. Then the closed—loop characteristic polynpmial of the a;‘)pr_oximate feedback system is
det(P), where P is given by ‘
P=AX +BY. (3)
Now, let P_ =diag(p, )withdegree(pi )=« + H; be a prescribed ploynomial matrix det @)
and rave the expected closed —loop poles in the left half of the complex plane. Setting » =
P, and equating terms of the sime degree on both sides of (3) yield
5z=0, | @
where S, Z and Q consist of conefficient matrices of (A’B>’. (X,Y) and P, respectively. If zero
rows in S and O are deleted,(4) is simplified into
SZ=0. , &)
It is shown in(Chen,1984) that for arbitrary Q(5) has a solution, which aiso means that arbitrary

pole assignment can be achieved. Furthermore, partitions S and 7 as

1

r
s=1[s, s,1, z=[zT ZZT] . ‘ 6
with § , being nonsingular, then all solutions can be expressed as the following parameteric form
z,=s@~5,2), o
where Z , 1s an arbitrary real matrix.

Concerned with robust stabilization, we define the error matrix function as {oliows

EN=YO)-Y, 0=IE0D. E@), E (D] &)

Simulations are undertaken to calculate the matrix W(r) = [w OL-w, (1), -, w () ,

where W is the response from zero initial conditions of the system (7 + XG 'K to the

input vector E, Let w. be the element of W at row i and column j.Since (r

=1 > . . . . » .
+XG ) K is stable, then w, is bounded and continous on the infinite open interval 0 < <




No.l Servocompensator Design with Robust Stability 71
0. -

/ @

with its local maxima and minima reached at times t, <t,<-, satisfying sup to=

4

. o in the extended half — lime ¢>0. Define

.
NT(W"J‘ = 'W.-,-(O i )i + Agllw',j(tk )~ w e, )f + 'WUV(T)“WU(tk' )I,
Jhere i is the largest integer k& such that t, <T,and
whe
N, w y=supN (v ), ¥ (W)= {N_ Gv, 0}
: 7 iy - v

7

hen K, will also stabilize ®'(:{Owens et 4, 1984) if

the composite system (@ 'G) (K ,) has no pole — zero cancellation, and )
r(N_(W)) <1, where 7{ - } is the spectral radius of a matrix. (10}

Obvicusly, r depends on the paramster matrix 7 . in {7}, and we then search for a optimal

7" g that it minimizes r

micr{ (3] ($5))

Z;

Sinee the relationship between Z, and r is very complicated, the gradient of r with respect to Z, is

not avatable. We have to use somie multidimensional search methods such as Hooke=Jesves and

Rasenbrock. ones (Bazaraa and Shetty, 1979) solve the problem (11). If the minima r* < | with the
ophanal sotution .Z; » then the controller parameters are obtained from(7), and clrsed—loop system
simulstions can be carrisd oul to check the effectiveness of the design. Otherwise, If the minima r™ o 1,

the robust siubilily is not achieved either because the given approximate model is not accurate enough

to provide stability predictions for the real feedback svstem, or because the controlies 15 oo sim e to
meet the required robustness. Tt is thus necessary to constonct a more aceurate model, nr 1o constract a

more complex ALwith inereased column degrees in an attempt to reduce r” .
3. Application Example

The design method presented in the last section has been appiied to the controller design of a
large-scale three—compoment distillation plant with cascade two columns. The feed is 2 mixture of
methanol, ethanol and propanol, which flows into the first column. The side stream product is fed into
the second column for further seperation. The purpose of the operation is to make the concentrations of
twe top and a bottom products as high as possible. The control inputs are two relfix z‘ﬁtioes and a va-
bour flow rate at the bottom of the first column. The plant frequently operates at two different condi-
tHons, under which models have been built seperately as follows; »

f ~ 2187 /{1155 + 1) 0

FRGES 0 ~ 0425/ (0.865 + 1)

L ~6.46 / (1.08s5 + 1) —=34/(1.3267s + 1) 2837 /09554 1)
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; : ; , i —
—1.85/(0.82667s + 1) 0 1.175/ (1455 + 1)
G, (s)= 0 —0.344/(0.61667s+1)  1.15/(1.3333s+ 1) |,
—4.527 / (0.62667s + 1) —2.515 /(1.0067s + 1) 1.84/(0.725 + 1)

where the unif time is 30 minutes. The broblem at hand is how to design a robust controller su
ch that the closed—loop system works well at both operating conditions. With the—method mep.

tioned above, G is regarded as the “ approximate” model of the plant, or & L, =G

1 , and G
2

as the “real” plant, or G=G ,- Then, the step—response amitrices ¥(#) and Y, (z) can be obta-

ined, respectively, from the simulations of G , and G, and E(?) is just their difference.Suppose
the disturbandes and tracking references are step signals. It implies that ® = 5. The required
left coprime rfaction of (IZ'_’G1 is obtained as follows

® 'G, =4 'B

0 ) 0 5(1.08s + 1)(1.3267s + 1)(0.95s + 1)~
A= 0 5(0.86s + 1)(1.2533s + 1) 0 >
s{(L15s + 1D(1.355 + 1) 0 0
[ - 6.46(1.3267s + 1)(0.955 + 1) — 3.4(1.08s + 1)(0.95s + 1) 2.887(1.08s + 1)(1.3267s + 1)
B = 0 —0.425(1.2533s + 1) 0.8(0.865 + 1)
- 2.187(1.355 + 1) 0 : 1.075(1.15s + 1)

It follows that « =4, o, =« =3. It is easily seen that py=4. Let the controller K, = yx !

with X having columu degrees p, =3, p, =p, =2, and P, =diag{(s + 2)71(5 +2° e+ 2’}
with all the closed —loop poles at — 2. Then we solve (11) and obtain the minima

¥’ =0.637422 <1, wich shows that the robust stability has been achieved. The resulting
controller is |

— (118" +4.55" + 6.0s + 2.88) / (s° + 8,385 + 175+ 4.25),

(4.74s" + 2015 4+15.9) / (" +9.27s + 15), — (2.236" + 10,65+ 10.8) / (s + 8.55 + 20)
— (445" +185" +24.05 + 11.5) / (s° + 8.385” + 175 + 4.25),

— (0.536s" +2.40s + 1.81) / (s +9.27s + 15), + (8.69" - al2s+ 424)/ (5" +855+20) [ *

— (225" +9.0s" + 12.05 -+ 5.76) / (s + 8.385” + 17s + 4.25),

(9.65s" +43.1s +32.5) / (" +9.275+ 15), + (5.625" + 26.65+27.4) / (s + 8.55 +20). 4

Finally, the composite controller is K=K, / s. Simulation results are shown in Fig.1 and exhibit satis-

factory performances.
4. Conclusion

With the assumption that the control designer has a reliable estimate ¥(z) of the step response ma-
trix of a linear system G. here is a systematic technique for the design of feedback controllers based on
an approximaie plant model G, with plant modeling error (¥—Y,). The data can be used in a robust sta-

bility criteria that produces the guarantee that the controller designed based on the approximate model



Servocompensator Design with Robust Stability 73
No.l

150 stabilize the real plant despite the known modelling error. Therefore with this technique, it is
s .

cessary for design to use or even to know the real plant model G; i.e., the technique can be used
not 1°

witi &
gy on data from a plant step test. It produces the greatest degree of robust stability and
dire¢ . :

ficantly reduces the degradation of the real transcient performance from the expected one. The ex-
sight

e included indicates the design being highly successful and easily achieved even in the presence of
amp

pstantial modelling error or at changeable operating conditions.
su

:
%' for Model 1

¥ for Mode! 2

Response to Reference [0.0,0.0,1.0]"

Fig.1 Closcd—loop Responses to References
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