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A Globally Convergent Multivariable Stochastic Adaptive' Control
Algorithm Based on CARIMA Model*

Chai Tianyou

‘ (Department of Automatic Control ,Northeast University of Technology ,Shenyang)

Abstract; In this paper a novel stochastic direct adaptive control algorithm for multivariable linear sys-
tems described by a Controlled Autoregressive Integrating Moving Average (CARIMA) model is proposed.
This scheme not only ensures the robust offset rejection for any constant load disturbance acting on the plant
but also has globally convergent properties even for nonminimum gystems. In particular, it requires only
knowledge of the integer valued parameters of the system interactor matrix.
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1. Introduction

A multivariable self —tuning controiler for CARIMA systems was proposed [ 1]. This algorithm
ensures robust offset rejection,but requires a priori knowledge of the system interactor matrix and its
global convergence analysis is not established. The global convergence of a self —tuning controller for
general multivariable systems was established in [2],the leading assumption is that the system interac-
tor matrix is known a priori. This paper follows the idea in [3] to eliminate a priori knoWledge of the
noninteger valued parameters of interactor matrix. The plant controlled by the adaptive scheme pro-
posed is assumed to be described by a CARIMA model. The global convergence proof is carried out by

resorting to a modified least square identification algorithm.
2. System Model and Control Law

Let the system be described by the following matrix polynomial CARIMA model ;

Az Dy (@) = Bz Du@) + C(z7)H(z") 7180 @2.D
where u(t) € B* and y({) € R* are the control and output vectors,respectively,d (zD=1—z"! and
A(z1),B(z™1),C0(z™!) are polynomial matrices in the backward shift operator z—! such that 4A(0)
=C(0)=I, I being the nXXn identity matrix and det C(z~)#0 for |z|>=1. Rank B(z™!)=n.
B(z™1) is of the form ' :

B(Z_l) = [Z_k‘iBij(z—l)] s »B.‘J'(Z—l) = Zbijlz-l’ b;jo ¢ 0, (2. 2)
=0

&(t) €R* is a noise vector characterized by. _
E[¢@W)/F ] =0 a.s E[EW@WEWT/Fey] =Q a.s. with trace @ < oo. 2.3
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. 1y
Alrx_’njosup-jv-;”‘f(t)uz<°° a.s. . (2. 9y

F, denotes the 5—algebra generated by data up to and including time ¢{. As shown in [3],if rank
B(z~!) =n,there exist diagonal matrices D(z™') and K(z™!) such that
Lu:loD(z—l)‘lB(z_l)K(z_l) = K,, detK;## 0, (2.5)
where
D(zY) = diag(z™™) k=1, K(z™!) = diag(z™%) d; = 0.

If K;; are known,the polynomial matrices D(z™1) and K (z7!) can be determined by the Methog
[3]. Because of spectial limitations we do not described this method here. If D(z™") and K(2™1) gy
determined ,then define :

Bi(z™) = D(z"D7IB(zDK (=Y, Bz = [zFBy(z)], B.0) =K,, (2.5)

Bj=Fky— ki — d; Gyj =1, ,m).
Then the system model (2. 1) can be transformed into

Ay = DBz DA + €z )TIE® 2.7
where
a(®) = K Hu@. , (2.8)
Here we first derive the optimal control law minimizing with respect to z(¢) the fbllowing performance
index '
J = Bllle¢¢ + BI*/F.], _ (2.9)
where 7
e(t + k) = P(z"HD(2)y(®) — R(Z_?)w(t) + Q@@ Du@), (2.10)

and w(¢) €ER* is a bounded reference vector,and P,R,Q are weighting polynomial matrices in z~!

such that P(0)=1I,and k=max k; The control law is deduced by using the optimal prediction ¢* (¢

1<

k/t) for p(¢-+k)=P(z—1)D(2)y(t) given by the following lemma.
Lemma 2.1 The optimal prediction * (t-+k/t) of @(t-+%) satisfies the following equations.

@" ¢+ k/t) = a(z"Dy @) + pG"NDu(®) + ¢ (D" t/t — k), (2.1D

e G+ k/D) =9+ k) — v+ B, ' (2.12)
where ¢(z71), f(z"1)and Z(z"‘)are polynomial matrices in z~! whose orders are n;,n, and 73,16
spectively.

o(t + k) = F(zD)E{ + k), degree F(z™)) =k — 1. (2.13)

Proof Define the polynomial matrices 4(z~1), C(z™1), O(z™)), F(z™), F(z™), F(z™), Gz

G(zD ,C_} (z~!) satisfying the following set of relations:

C(z DAY = AT, detC(zY) = detC(zY), 0(0) = I, 219
P(z)D(z)T(z") = F(z")6(z"DAG™D) + 276 (zD).

degree F(z1) =k — 1, D(z7!) = z<*D(2). (2.18)
C(zDF (7)) = F(zD0(Y), detl(z)) = detC(z™), C0) =1, (2.16)
TEHEEY = G(DHTED). | (2.1
1=F@EDEGED + 276 ). (2.18)
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plong the lines depicted in [2], (2. 11) and (2. 12) can be established.

The optimal control law is now described by the following theorem.

Theorem 2. 1 The optimal control law and the minimum possible value of the performance index are
given by _ ‘ .
@ @+ k/t) = R(z"Dw() — @(z)Hé(z")u®), (2.19)
J = EBlllet + ®|*/F] = B[|l»¢¢ + ©|?/F.] = 1~ - (2.20)
proof Using the same argument as is used in [2] results in (2. 19) and (2. 20).

3. ‘Adaptive Algdrithm and Global Convergence Analysis

In order to derive the direct adaptive algorithm , first we use (2. 11) and (2. 12) to obtain the es-
timation equation of controller parameters described by

p(®) = a(z"Dy@ — k) + ﬂ(é“)é(Z‘l)i(t —B+a (D" (¢ — k/t — 2k) + F(z7HE®.

3.1
Using (2. 11) and (2. 19) results in ‘
a(z"Dy () + @6z Du(®) + G GE Ve t—k) =y ¢+ k), ' (3.2)
where ' '
7" ¢+ k) = RGEDw() — @(z)é(z"Du(t). (3.3)

To ensure that the adaptive control algorithm has global convergence properties we use a slightly modi-
fied least squares algorithm to estimate the controller parameters. Define parameter matrix 6 and data
vector X (¢) as follows '
| 0 = [ao’au"‘;ﬂo»ﬂlr‘";]
and
X = [g@®T,y@ — D7, ;8(z"Du@)7,6(z"Dut — 1)7, 337, 3¢ — 17,77,
where y(¢) is the posteriori prediction replacing @* (¢/{—k) and given by
7O = 6OXE— b)), @D
with (%) =0 for v< k-~ 1 and where d(¢) is the estimate at ¢ for 8. Thus direct .adaptive control algo-
tithm can be described by .
b)) =8¢ — k) + alt — D[ — 6 — KXt — k) ]X (& — kTP — k). (3.5)
BOX@) = y* (4 + b). (3.6

Pt — 20Xt — W)X — k)TiD(t — k)
1+ X —BPU—20)X0@— k)

P(t— ) = P(t— 2k) — (3.7

With P(— 1) ==eee =P (—k)dI 6>>0
a(t — k) = 1. » (3.8)
Condition A
7 — P — k) < K, <<oo and XU — E)TP(t — 20)X(G — k) < K, << oo, (3.9)
Where
, rU— B =r@t—k— 1)+ X¢— BIXC— k), (3.10)
With p(— k) = voe = r(— 1) = a(al + 22 + =3).



18 CONTROL THEORY AND APPLICATIONS

Vol.7
If condition A is not satisfied ,then
=2,
PG — B = Do PG — 2B, @1y
t— B = 1
“ =1TF XQ@—BDPE— XU — k) (3.12)

The global convergence result for this adaptive algorithm can be stated in the following theorem,
Theorem 3.1 Assume that (A1) the time delay k; are known; (42) an upper bound for =} 12,03
is known ; (43) the off —line choices of P and @ are such that

det[Q(z)6(z")4 (=) + P(zDD(@)B ()] 0 for |z] >1
where A(z“) and B(z“‘) are defined as follows:

DGDB(zDA (1) = AGDEB (7)) det 4 (z7) = detA(z™), (3.13)
44) c (z~1)~1—0. 51 is strictly positive real and defined in (2.18) a.s.

T (1) = F(z0(Y) = I — 26 (z™D. (3. 14)

Then the algorithm (3. 5)— (3. 12) when applied to system (2. 1) has the following properties with
probability one '

N N
1) limsup “‘1]\72”3!(0"2 ) limsup -%]-Z 6z Du@® |2 < oo, (3.15)
: —.m ‘=1

2) Iim —ZEne(t + BIE/F) = ¥ ‘ (3.16)

N—»oo

Proof part 1. Define the following quadratic form in  §(t) (8(¢) = ) — &

u[6OPU — B)TIE®OT]
r(t — k)

Then along the lines depicted in [2,4] and Kronecker' s Lemma, it can easily be concluded that

N
1&1’2 ) NZIlb(t)ll2 =0 a.s. ‘ (3.18)

Part 2. Introduce the matrices B(z™1),@(z™1),4" (z1),P" (z~1) such that
B(zDQ(zY) = @(zHD(z"V)B(z7!), det D(z~ B,(z~!) = detB(z"1), . (3. 19)
A" (zDP(z")D(2) = P*(z DAY, detd(z™)) = detd” (z™). (3. 20)
Premultiplying (2. 10) by A*or B,respectively and combining (2. 7), (3. 19) and (3. 20) the fol-

V) = (3.17)

lowing output and input dynamics hold ; :
(P*DB, + A*Q0)6a(t) = dA*e(t + k) — P*C&() + A"Row(®), G 21)
(BPD(2) + QA®)y(®) = Be(t + k) + BRw(®) + QC5(1). (3.2
From (3. 13),(3.19) and (3.20) '
det[p* DB, + A* Q6] =det{A*[PD(z)A™'DB, + @481}

—det{A*[PD(2) B+ Q3AJA~Y} = det[PD(2)B+ @oA]

det[BPD(2) + QAS]= det{B[PD(z) + Q(DB)~'48]} = det[PD(2)B+ QA4 6]. (3-2%)
Using the same method as is used in [4],and from (3. 21), (3. 22) and (3. 23) we have

r(N/N < (ol/N)Zn W1+ e< @MY oIt +o, G0

=1
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rhus from (3. 18) and stability of C(z~1) we have
N ¥

ltim /N E lo¢@) |2=0 a.s. and Alrlm (l/N)_Z lz@®l2=0 a.s. (3.25)

00 =1 dad =1 .
(3. 15) now follows from (3. 10), (3. 24) and (3. 25). Using the similar argument used in [2]
yieldS ' ‘

. .
i i) —ov(¢ z2=0.
Alrl_x.r;(l/N)E e — v |l

t=k
Noting [e(®) —v(@)] = [ — y* (O — v()] = [@* ¢/t — k) —y* ()] is F,—, measurable and
then we have ‘

N
Lim (1/W) 3 ECllett — BIF/F)

t+1

N .
= lim (/M PEle¢+BD — v+ D+ + D=7 as

1=1

Remark 3.1 For simplicity @ and P can be choéen éuch that @Q=2AI and P=1, satisfies
det[2(1 — 2 DA™Y + D(z™Y) 4+ D(z"VIB(z")]# 0 for |z| = 1. (3. 26)

4. Simulation Results

Consider a nonminimum——pﬁase double—input double—output system described by
1 — 0.95z7! 0.2z"! + 0.268z72 0.1z"! WO + 28D + 4,
0 1—0.1z71 —z72 10272
where £(t) =[£,(t) &()J is a vector of zero—mean random variable with covariance matrix equal
to 0. 1I and a vector of constant additive disturbance d=[3 2]7; The reference signals w;(t) and

y(@) =

wq(t) are two square waves of period 80 samples and ranges & 5. Simulation results show that the al-

gorithm proposed has the robust offset rejection properties.

bk

Fig 1 Response of nonminimum phase system using the controller proposed
5. Conclusions

This paper has shown that, in multivariable stochastic adaptive control, it is possible to replace the
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usual assumption of known interactor matrix by a weaker assumption that the integer valued Parame_
ters are known. Because systems under control are described by CARIMA the resulting adaptive con-
trol algorithm has effective integrating properties, thus ensuring the robust zero—error regulation for
any constant set point and load disturbance. A global convergence proof for this adaptive Scheme has

been presented without assuming that systems are minimum phase.
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