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Abstract; This paper discusses the absolute stabilization problem for Lur’ e systems with multiple nonlinear loops in terms
of state-space approach. Solvability conditions are presented to design nonlinear controllers such that the closed-loop system is
absolutely stable via the algebraic matrix inequality (AMI) approach. It is shown that feedback controllers exist if and only if a
class of special multilinear matrix inequalities (MLMIs) are solvable. Also, the AMI-based design method obtained in this paper
is simplified so as to be computationally feasible and tractable. The approach can be generalized to deal with other problems
such as H,,H.. and dissipation control problem.
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1 Introduction

Although the importance of the stabilization control
problem for nonlinear systems has been recognized for a
long time, researches are not very sufficient even for the
Lur’e system, which is a kind of typical nonlinear sys-
tems (See, e.g.,[1,2]and references therein). Re-
cently, in[3]Savkin and Petersen considered an exten-
sion of Popov criterion in state space. A necessary and
sufficient condition involved in two parameter-dependent
algebraic Riccati equation (ARE) (with a coupled con-
straints) was presented for this property. However, the
Lur’ e system under consideration in [3] only includes

one nonlinear loop and some assumptions made on the

Lur’ e system were redundant.

In this paper we consider the absolute stabilization
control problems for the generalized plants described by
the Lur’ e system with multiple nonlinearities. The ob-
jective is to design controllers such that the closed-loop
systems are absolutely stable. The Lur’ e control vector
is considered as a measurable output. Thus, unlike the
linear feedback case, the control law given in this paper
is nonlinear and the former case can be dealt with as a
special one. Based on LMI approach in control theo-
ry!*), both state feedback and output feedback cases are
discussed and the solvability conditions are reduced to

multlinear matrix inequalities (MLMIs) . If the number
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of the nonlinear loops turns to be one, results obtained

in this note is sufficient and necessary in the sense of ex-

istence of Lyapunov function.

The controlled plant G is described as

% = Ax + Bp + Bu,
y = Cx, (1)
qg = Cx,

where

Pt = (pi(e),sp, (0)),

¢" = (qi(1), g, (1)),
pi(t) = $:(q; (1)),

¢,(o) satisfies the follwing sector condition

0 < o$;(0) < lo”. (2)
Andx € IR*,u € R™ and y € R, represent state,
control input, and measurable output, respectively. p €

i=1,2,,m,.

R™ is Lur’ e control vector, while ¢ € IR™ is the signal
for control, which relates p and x via a sector bound
function. Suppose coefficient matrices in (1) have ap-
propriate dimensions.
Denote L: = diagll, ", lnp} to describe the
bound of the nonlinear sector.
Consider the following free system
% = Ax + Byp, )
{ q = Cpx. ()
The absolute stability of (1) can be converted to the ex-
istence of the Lyapunov function in the following form

V(x) = «"Px +22AJ
i=1

C x
0"“ $;(c)do, (3)
where
P > OsA: = diagl"iv'”’kn } = 09
and
C'(II‘Z = (C}"q"” ’ C'gp,q)-

It is well known that the existence of V(x) in the form
of (3) is equivalent to the famous Popov criterion(3 .

The following lemma reduces the absolute stability

R™BT 4+ QA" + AQ + B,R

for Lur’ e system to the solvability condition of a certain
LMI.

Lemma 1 (Absolutely stable condition ) For
Lur’e system (1)', if there exist P > 0,A = 0, and

T: = diag{t;, ", ¢, | = O satisfying
ATP + PA PB, + A"CIA + CILT "
. <y,
BJP + ACA + TLC, ACB, + BICIA - 2T
(4)

then (1)’ is absolutely stable.

Lemma 1 follows from the statement of § 8.2 of
[4] with a little difference.

Remark 1 When n, = 1, the conditions in the
above lemma are equivalent to the existence of Lyapunov
function. When n, > 1, the results are conservative.

Absolute stabilization problem; To design con-
trollers such that the closed-loop Lur’ e system is abso-
lutely stable.

2 Main results
2.1 State feedback case

Suppose the Lur’ e control signal p is measurable
and consider feedback law v = Kx + K,p. Thus, u is
nonlinear since it is related to x via a nonlinear function.
When p is not available, its gain K, can be set to be 0
and the corresponding results for linear feedback con-
trollers can be given.

The closed-loop system becomes

{x = Ax + B,p, (5)
q = Cp,

where

A=A+BK, B,=B,+BK,.
Our goal is to find K and K, such that (5) is absolutely
stable.

Denote Q: = P~'and KQ = R. Applying Lemma 1
to the closed-loop system, the inequality (4) corre-
sponding to the closed loop system (5) can be rewritten
to the following form via matrix transformation.

B, + BK, + R"BLCIA + QATCIA + QCILT

<0. (6)

By + KiBY, + ACAQ + ACB.R + TLC,0 AC,(B, + BK,) + (B, + B,K,)"C'A - 2T

Hence, we have the following result for absolute
Stabilization .

Theorem 1 If there exist A, T, 0( > 0), R and

K, satisfying (6), then there exists a state feedback non-
linear controller v = Kx + K,p(K = RQ~') such that
the closed-loop system is absolutely stable,



790 CONTROL THEORY AND APPLICATIONS

Proof is omitted for brevity.

Remark 2 (6) is a bilinear matrix inequality
(BLMI) of K,,Q,R,T and A. For BLMI, Goh, et
al., presented local and global optimization methods in
[5] and [6]. If the parameter T (related to S -proce-
dure) and A of the Lyapunov function (3) is given, the
condition is exactly a linear matrix inequality (LMI) for
K,,Q and R.

2.2 Dynamic output feedback case

Suppose that X, is a nonlinear dynamical output
feedback controller with order of n,, whose state equa-
tion has the following form

{xc = Ax, + By + Byp, )
u=Cx + Dy + Dyp.

Combine (7) with the plant (1), then the closed-loop

x= A% + Bp,
_ (8)
g = Cgx,
where
A =A+IA5’,LGC’y, Eq = [Cq 0],
. P B, + B.D,, (9
B, = B,+ 8D, = [ 5 ]
p
and
A O|B, O
i B, 0 0|0 I,
[éy GT]: ~|c, oDt B!
0 I,|CT AT
A B A DIJ
o D PR g
0 B,
(10)

Our objective is to find G and D, such that (8) is abso-
lutely stable.
Substitute the coefficient matrices of G for those in

(4) correspondingly. Hence, (4) implies

0 + BGC + (BGC)' < 0, (11)
where
P ) RS
= Aéqéu ’ e = y s
ATP + PA 14
Mt M,

and
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A

M, = PB, + ATCIA + ABD, + CTLT,
M, = ACﬁﬁB’E@'EA +ACPBMﬁp +lA)};l:?ECEA 2T,
Set 0: = P~! and note that

h 1l
I DS I P

and
5] - (e
ol o o o’
- (12)
NN
od ~ 0 0 I

where B is defined as B- B = 0 and BL BLT > 1.
Partition P to be a block matrix compatible with (10),

P [X Pu] (X - PoP5 Ph)™!
1 = PL Pl Y: = (X - PpP3 Pp).
(13)
In this case
o-r -, ]
* *
and
X - v = P,P3PY,. (14)

It can be shown that 2 is absolutely stable if and
only if the following two formulas hold (see [4] for de-
tails)

2 CTJ_ 07 [ATX + XA Ml] CTJ_T 0
y [ y ] <0,
0 I Mt M, 0 I
(15)
‘Bl 01[YA"+ AY N][BL 0O
[ I < 0. (16)
0o I NT Nt 0o T

where
M,=XB,+A"CIA + CILT + XB,D,, + PyB,,,
M,= AC,B,+BICIA + ACB.D,, + DLBICiA - 2T,
Ny=B, - A"YCIA + YCILT + B,D,,,
Ny= - AC,YCILT-TLC,YCIA - 2T.

(17)

The following condition results from the decomposition
of (13)

[;Y II/];O. (18)

Theorem 2 If there exist A, T,X > 0,Y > 0,
Py, B, and D, satisfying (15), (16), (18) and the
constraint (14) for an arbitrary P,, > 0, then there ex-
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ists a nonlinear output feedback controller >, such that
the closed-loop system is absolutely stable. In this case,
if we suppose the column dimension of Py, is r, the or-
derof Zcis n, = r.

Proof Based on the above derivation, it is shown
that the conditions in Theorem 2 hold if and only if (4)
(in Lemma 1) holds when the coefficient matrices of o
are substituted for (4). Hence, 3 is absolutely stable.
According to (10), (13) and (14), it is easy to show
that n, is equal to the dimension of Py, i.e.,r.
Q.E.D.

2.3 On computation and design procedure

As to the constraint (14), we present a theorem in
the following to show that this constraint can be removed
without loss of generality.

Noting that P, and B,, which appear in (15) have
the form of Py, B,, , if we define Py = P B, Theo-
rem 2 can be simplified as follows.

Theorem 3 If there exist A, 7,X > 0,Y > 0,
Py and D,, satisfying (15), (16) and (18), then there
exists an output feedback controller =, such that the
closed-loop system is absolutely stable.

(Proof is omitted for brevity. )

Although the constraint is removed by Theorem 3,
(15) is bilinear for the controller parameter D, and X.
In the following, we consider a more tractable case,
where D,, in (7) is set to 0.

Thus, the submatrices in (15) and (16) can be
simplified and (15) becomes linear for X, A, T and
Py. In addition, a static condition that should be satis-
fied is

ACB, + B)CIA - 2T < 0. (19)

The design method based on iteration algorithm can
be presented correspondingly .

i) Solve LMI (19) to get a pair of A and T

ii) Solve LMI (15) to get a pair of X > 0 and Py,
if (15) has no solutions for X and Py, tumn to step i) ;

iii) Solve LMI (16) and (18) to get ¥ > 0, if
(16) and (18) have no solutions for ¥, turn to step i) ;

iv) If X - Y~!' > 0 (otherwise, choose an appro-
priate e such that (X + el, Y ) satisfies (15),(16) and
(18) as well as X + el — Y_, > 0), denote B, = Py,
Py = Iand Py, = (X - Y~')~'. Thus, P is obtained;

v) Solve G via LMI (11). Thus, the nonlinear
controller is obtained.

Since each step in the above procedure is only in-
volved in convex optimization of LMIs, this design
method is feasible and traceable by use of LMI-toolbox
in MATLAB.

In fact, the absolute stabilization problem stated in
this paper is similar to the problem discussed by Savkin
and Petersen (in [3]), if only linear feedback con-
trollers are take into account. Three improvements have
been made in this paper; First, the Lur’ e system con-
sidered here has multiple nonlinear loops instead of sin-
gle one. Second, the Lur’ e control vector p is used for
the feedback law and hence the controllers become non-
linear. Third, some assumptions such as controllability
of (A, B, ), observability of ( 4, C, ) and BiC}C,B,
> 0 supposed in [3] are removed here. If we confined
the controllers to be linear, the results can be simplified
as follows.

It is well known that Lur’ e systems can be consid-
ered as linear systems with nonlinear uncertainties. Some
robust control methods (for example, the approach dis-
cussed in [7]) can deal with Lur’e systems. However,
a direct treatment on Lur’ e systems may describe their
properties much more explicitly. Moreover, when the
Lur’ e control variable p is needed for feedback con-
trollers, the robust results for linear systems may be un-
available.

3 Conclusion

This paper discusses the absolute stabilization prob-
lem for Lur’ e systems with multiple nonlinearities.
Solvability conditions are presented in terms of multilin-
ear matrix inequalities (MLMIs) for both state feedback
and output feedback cases. Feasible design algorithms
obtained in the paper are involved in optimization of
LMI or BLMI, which have been studied in [4] and [5,
6] more sufficiently. The approach presented in this pa-
per can be used to deal with other problems for Lur’e
systems related to LMIs, such as L,-gain control, pas-

sive control and other dissipative control problems.
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