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Abstract: This paper proposes and investigates the passivation control problem for a class of nonlinear systems with distur-
bance, that is, to construct a feedback control law such that the corresponding closed-loop system is internally stable and pas-
sive. A necessary and sufficient condition of paassivation is given with feedthrough term. In addition, two specfal cases of the

passivition problem are discussed using Lyapunov recursive design techniques. Then, more general case is solved via control

Lyapunov function.
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1 Introduction

Dissipative system theory has played an important
role in the study of nonlinear uncertain systems. In [1]
and [3], Isidori A. constructed H,, controller via differ-
ential game approach to make the corresponding closed-
loop system dissipative and internal stable. From the
viewpoint of engineering, if we select || z[2 -
7 w1l 2 as a supply rate (here | - |2 is L, norm),
where w and z represent the disturbance and penalty sig-
nal respectively, then the energy of system’s engineer-
ing signal will be measured by L, norm. Therefore,
When systems are dissipative for the supply rate, the dis-
turbance will be attenuated in the sense of the L, gain

less than or equal to a prescribed number.

On the other hand, if we take the inner product of
system’ s input and output as supply rate, the goal of
control should be to render the corresponding closed-loop
system passive, which is a special case of dissipative
system. As well known, the passivity of an input-output
system originated by the dissipation of energy across re-
sistors in an electrical circuit has been widely used in op-
timal control and stability analysis of systems[2~5]. In-
deed, a lot of control problems for general nonlinear
systems can be reduced to find a controller which renders
the closed loop system passive. Many papers have ad-

dressed this passivation problem!48:10-111
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As is shown in [4] and [12], passivity of a non-
linear system is equivalent to the system with appropriate
transformation of external signals to be dissipative with
¥-supply rate, i. e. having finite L, gain. This means
that robust stabilization based on small gain theorem and
H,, disturbance attenuation problem can be solved by
finding such a controller that renders the nominal system
passive. More generally, the design problem in this case
should be formulated as follows; For a given system
with both control input and disturbance input, find a
feedback controller such that the resulting closed-loop
system is passive and internally stable. In this paper, we
provide some results for this problem. First, we will
give a necessary and sufficient condition for a given non-
linear system with feedthrough term being passive.
Then, using this condition, we will discuss two special
cases in which KYP property or a kind of matching con-
dition is satisfied respectively. Finally, a solution for a
more general case is given via control Lyapunov func-
tion.

2 Passivity condition and problem de-
scription

Consider the following system:

{ %= fx) + g1(x)w,
y = h(x),
withx € R",w € R™,y € R™, where f, g, h are all
smooth and £(0) = 0,h(0) = 0.

Definition 1’
sive, if there exists a C° nonnegative function V : R* —
IR which satisfies ¥(0) = O such that

V(x(2)) - V(x®) < J;yT(S)W(S)ds,

(2.1)

System (1) is said to be pas-

(2.2)
for all w € R",2° € R", where x = $(¢;4°, w) is the
solution of ¥ = f(x) + g2(x)w starting from x(0) =
x°. V(%) is called a storage function of system (2.1).

Proposition 1145

C' storage function if and only if there exists a C' non-
negative function V : " — R with ¥(0) = 0 such that
LV <0, L V=ht (2.3)

System (2.1) is passive with

for each x € R".
We claim system (2.1), which is passive with C'
storage function, has KYP property, if there exists such
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a V(x) satisfying (2.3).
Consider the following nonlinear system:
= (x) + (x)w + (x)u,
{ / &1 82 (2.4)
y = h(x) + K(x)w,

with state x € R", control . € i, disturbance w € R™
and measurement output y € B™; £(0) = 0,h(0) = 0,
f>81, &>, and h are smooth vector fields having suitable
dimensions, K is a positive-definite matrix for all x €
B".

Definition 2
(henceforth just “PCP”) .

PCP is to construct controller u, which enables

Passivation Control Problem

system (2.4) to be passive with a C' storage function
and to conserve innmer stability, that is, find v =
ux (x), such that
1) The closed loop system
{ 2= flx) + go(x)us + gi(x)w,
y = h(x) + K(x)w
is passive, i.e. there exists a C' nonnegative function
V(x),V(0) = 0, such that

V(ix(t)) - V(%) < J;ydes,

VwER™, V'€ R andx = $(1;4°, w) is the solu-
tion of the first equation of (2.1).

2) When w = 0, the system & = f(x) + go(x)u«
is asymptotically stable at x = 0.

(2.5)

(2.6)

Here u . is called a passivation controller.
In order to solve this problem, the next theorem
plays a key role. It gives a necessary and sufficient con-

dition for a nonlinear system with the following form to

be passive;
¢ = f(x) + g1(2)w,
{ i = flx) + gi(x)w (2.7)
y = h(x) + K(x)w.
Theorem 1 System (2.7) is passive with C!

storage function if and only if there exists a C' nonnega-
tive function V(%) with V(0) = O such that

1 o T
Ly(x) + (L, V - KK (L, V- kD" <0,
(2.8)
holds for all x € R".

Proof From (2.6), we may obtain its infinitesi-

mal form: % < yTw, that is

LV + Ly Vw < h'w + w'Kuw, (2.9)
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or equivalently
LV + (L, V - hDw - w'Kw < 0. (2.10)

By completing the square, it is easy to show that
(2.10) is equivalent to

l T -1 T\T
LV + 5 (L V = KK (L, V - BDT -

(0" = 5 (L V = KKK w -

1
2

“only if”;

K (L, v-r)' <o (2.11)

Consider the case of w =

LKL,V = KD in (2.11), then it implies
(2.8).

“if 7; If (2.8) holds, then (2.11) holds for all
w € R™, so system (2.7) is passive.

Remark 1
(2.5) is passive if and only if there exists u = ux (%),
such that

According to Theorem 2.4, system

LV+ Ly Vi +%(Lgl V- K '(L, V-rD)" < 0.

(2.12)

Remark 2 It should be noted that if system
(2.1) satisfies KYP property, then the implication of
(2.8) for (2.7) is passive, i.e. (2.5) withu, = Ois

(6] Hence, in this case, if we do not require the

passive
system to be inner stable, then PCP of (2.5) would be
trivial .
3 Special cases of passive control
3.1 Case with KYP condition

Assume that the given system (2.4) satisfies the
KYP conditions in the sense that f(x), g(x) and
h(x)in (2.4) satisty (2.3) for a suitable C' function
V(). This means that system (2.1) is passive with the
storage function V(x), and we can show that selection
U = 0 makes system (2.4) passive.

Proposition 2  If system (2.1) is passive, then
system (2.7) is passive.

Proof Since (2.1) is passive, then there exists a
C° positive function V(x), such that

V(%) - V(20 < L‘)h”f(s)w(s)ds, (3.1)
Vuwe gm,

Since K(x) is positive-definite
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Vix) - V(%) <

J AT ws) + W) K(x())w(s)ds =

j;yT(s)w(s)ds, (3.2)

Vw€ R, Va® € R

Thus (2.7) is passive.

Note that passivity does not imply the stability of
free system & = f(x). Hence, if ¥ = f(«x) is not
asymptotically stable at x = 0, then we have to find
feedback a u = u. (x) such that system x = f(x) +
g(x)u, is asymptotically stable at x = O and system
(2.5) is passive.

Proposition 3 For system (2.4), if 2 | S =
{0}, then the PCP of system (2.4) can be solved by the
control law u = w4 (x) = — (Lg2 V)T, where V (with
V(0) = 0) is a nonnegative C' function satisfying

L,V =~h" and LV <0, Vx€R",

0 {x € R™ | LfV(x) =0},
S=I{x€ERILV(x) =0,V7r € D},

D=span{ad}g%:Osksn—l,lgigp},

g2(x) = {gu(x), ", gt.
Proof From (2.10), we have

v
3, gw+ gus) < y'w,
dv

i.e. S yTw.
System (2.5) is passive.

On the other hand, since x = f( x) is Lyapunov
stable (from LV <0) and 2 N S = {0}, we conclude
thatu = u.(x) =- (L, V)" globally stabilize x =
f(x) + go(x)u ([8], Theorem 2. 1), that is, system
(2.5) is inner stable.

3.2 Case with matching condition

Assume that the given system (2.4) satisfies the
matching condition: g,(x) = go(x)m(x), where
m(x) € K™ is a smooth matrix function with n > m.

As well known, if the system from control input u
tooutput { = h(x) has relative degree {1,1,--,1},

then under some geometric condition, there exist
changes

[z7 "] = T(x) = [2f(x) 27 (2)R"(2)]"
with feedback
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w=alx)lv-px)],

which transform the system into the following form:
2 = fol2) + fi(2,0)¢,
E=v+b(z,0w,
y=C+ M(z,8w,

(3.3)

where
M(z,¢) = K[T‘l([z,])],

a(x) = (L h(x))7", Blx) = Lh(x),

b(z,8) = L h(x)m(x) 1,or's0)
fo(z) and f1(z, ) are smooth functions4%

Now, the problem is to find a feedback control
v = C(z,{) such that the closed loop system of (3.3)
is passive with inner stability.

Theorem 2 Suppose that

Al) There exists W(z) > 0such that Lfo W < Ofor

each nonzero z.
A2) {f,h} is zero-state detectable.
Then, PCP of (3.3) is solved by

v=Ce0) == A D FE -

(0 - DM - DE - ¢
(3.4)
Proof Let V(z,£) = W(z) + 5 {"¢. Note that

system (3.3) with control (3.4) can be rewritten as;

y = h(8) + M(z,{)w,

where

Jo+ fi€ 0
o=l <] o=t
Since

LV + 5 (LeV ~ KDM(LeV — KD =
LW+ LW §+8C(2,0) +

(T = M - (T =

LW+ §'Li W+

T - DM - D+ (2, 0),

(3.6)
Let C(z,¢) be given by (3.4), we have LW -
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¢"¢ < - B"(x)h(x) < 0. Hence, passivity is followed
by Theorem 1 with (3.6)), and inner stability is fol-
lowed by

LV =L W + gTLﬁW +¢7C(2,8) <

-t =- KT (x)h(x) <0,

which is from (3.6), and {f, k! being detectable.
4 Passivation controller design via con-

trol Lyapunov function

The last section shows that the PCP of (2.4) is to
find v = u. such that (2.6) holds, and with inner sta-
bility. Now we combine constructing v . with seeking a
positive function V(x), this needs the following prelim-
inary concepts.

Consider control system of the type:

i = f(x) + ;m_‘gi(x)ui,

with states x € #i" and controls u € R™, where f and the

(4.1)

g:’ s are smooth vector fields and f(0) = 0.

Definition 3 The function V(x) is called control
Lyapunov function ( henceforth just “cIf”) for system
(4.1), if there exists a neighborhood N of 0 € k" and
a real function V : N — R, which is at least C' on N, is
positive definite, and such that for any x € N — {0},
the following condition holds:

inf {LV(x) + iuiLgiV(x)} <0, (4.2)

weRn”

for each x =< 0.

Denote :
a(x) = LfV(x), b;(x) = LgiV(x), iR=DIRE"
The condition that V is a cIf
equivalent to the statement that

LgiV(x) = (DR 1,"',m—>LfV(x) < 0,

(4.3)

Proposition 4

forall x € N - {0}.

Since clf is as a general rule easier to obtain than
the feedback stabilization, we can construct u » to solve
PCP from cIf V. As we know, there is not a genaral
method to solve the partial differential inequality such as
(2.8) and Hamilton-Jacobi-Issacs inequality ( H,,
method) . Now we use cIf, from the viewpoint of nu-
merical computation, this is more feasible than ever.

Theorem 3!")  If there is a smooth cIf V for sys-
tem (4.1), then there is feedback stabilizer v = k(x)
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which is smooth on N — {0} and
E0) =0, k(x) = (k(x),, ka(x)),
k(%) == b(x)e(alx),B(x)),
alx) = L¥(x), b(x) = LV,

px) = ib%(x),

i=1,,m,

¢(a,b)=

0' a<0, b=0,
‘27

_a_-l-\/ab_-l'bq_(i).‘ b>0 or 5<0,a<0,

(4.4)
where ¢ : R — I such that ¢(0) = O and bg(b) > 0
whenever b > 0.
For system (2.4), denote;

a(x) = LV(x) + %(Lglv- K" -
KL, V- hDT,

l;(x> =(B](x)’”'7l;p(x)) =
L,V = (Lg, V, o, Ly V),

g2(x) = (gu(x),,8,(x)),

so we have;

Theorem 4 If there exist a neighborhood N of
0 € 1" and a C' nonnegative function V : N — [ with
V(0) = 0, such that ¢(x) < O for each x € N — {0}
and b (x) = 0, then the PCP of system (2.4) is solved
by the feedback stabilizer &« = «(x), which is smooth
on N - {0},

a(0) =0, a(x) = (a;(x),",a,(x)),

a;(x) == b;(x)p(a(x),B(x)),

bi(x) = L V(%), i=1,",p,

Bx) = 25,
Proof

Theorem 4, there exist » = a(x) and a positive C'
function V() , such that

According to the given conditions and

LV + L Ve + 5(L, V = KK (L, V - B =
a(x) + (), s, ())bT(x) =

a(x) + 2L,V + (= b0 p(a(x) p(x)) =
rmflﬂ@ﬂ

i=1,,p,

/@ (x)43(x)q(B(x)), otherwise
<0, 4.5)

From the above illustration of the inequality, it can
be seen that u = a(x) enables system (2.4) passive.
On the other hand, we have obviously: LV + ng Va <
0for each x € N ~ {0}, so system %z = f(x) +
g2(x)a(x) is asymptotically stable at x = 0.

Hence the PCP of system (2.4) is solvable.

Remark 3 In Theorem 3 and 4, the stabilizer
u = a(x)is C' on N — {0}. But, if the clf satisfies
small control propeltym , it can be proven that u is con-
tinuous at x = 0.

5 Conclusion

In this work, we first presents the passivation con-
trol problem (PCP), and investigates the conditions un-
der which PCP is solved for nonlinear systems with dis-
turbance. As in the case of systems having relative de-
gree {1,1,+-+,1} and matching condition, the nonlinear
systems can be rendered passive and inner stable via state
feedback control law. Moreover, a sufficient condition
for solving PCP is obtained by means of control Lya-
punov function. This condition (4.3) can be used to
make computation programming seek the nonnegative so-
lution V of the partial differential inequality (2.12), it is
a feasible approach for this problem and, in some sense,
is helpful to the solution of HII inequality in nonlinear
H,, theory. We hope that our problem is meaningful and
our methods copying with the problem are effective.
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based on the sufficient stability conditions.
5 Conclusion

The necessary and sufficient conditions of general-
ized exponential stability for general type of retarded dy-
namic systems are established. Based on the established
necessary and sufficient conditions, an exponential decay
estimate on the transient response for general retarded
dynamic system is presented. All of the results are de-
rived from a special Lyapunov function. An application
by using the established conditions for a sapecial class of
retarded dynamic systems is also studied. It is revealed
that the established estimates can be less conservative
than those obtained by only using the sufficient stability

conditions in the literature.
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