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Abstract; To eliminate position-dependent disturbances in a constant-speed-rotation system, we have proposed a very effec-
tive approach that introduces a new concept called theposition domain” . However, because the position domain model of a linear
plant is in fact nonlinear, a linear control strategy may not meet the design requirements. To solve this problem, this paper pro-
poses a nonlinear repetitive control approach. The procedure for designing a control system comprises two steps. First, an input-
output linearization approach is used to linearize the input-output characteristics of the nonlinear plant in the position domain.
Then, a repetitive controller is designed for the linearized plant to ensure good performance.
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1 Introduction

In constant-speed-rotation systems, the rotational
speed must track the reference speed rapidly and precise-
ly . However, fluctuations in the rotational speed, which
are frequently caused by position-dependent disturbances,
have hindered all efforts to improve the precision of such
Systems. These fluctuations are caused by such things as
the non-uniformity of the magnetic flux in DC motors
and eccentricity in the structure of the rotation systems.

We have already proposed a method to eliminate this
kind of disturbance!] . Focusing on the fact that this kind
of disturbance constitutes a periodic function of the rota-
tional angle, we have defined a new concept called the
“position domain” , which is a set in which every element
is a function of the rotational angle; and have carried out
the design of the proposed constant-speed-rotation control
system in this new domain so as to eliminate such distur-
bances completely regardless of the rotational speed.
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A linear plant in the time domain, however, is non-
linear in the position domain. The proposed design
method for repetitive control systems was based on a lin-
earized model at a standard rotational speed. So, a differ-
ence arises between the nominal plant and the real plant
when the rotational speed differs from the standard
speed. This degrades the transient response, and the con-
trol system may even become unstable if the difference
in speed is too big.

As one solution of this problem, this paper proposes
a design method based on a nonlinear model of the plant
in the position domain. The proposed control system
contains a double control loop. The inner control loop
exactly linearizes the input-output characteristics of the
plant, and the outer control loop ensures good perfor-
mance for the linearized plant.

Notation and definitions

RH,, :set of real-rational functions in A which have no

A ; delay operator;

poles in the closed unit circle; R [A ]:ring of polyno-

mils in A ( CEHa ) N6 Ne: =
sup | 6(e*)1(6(2) € RHa).

2 Discrete model of the rotation system
in the position domain
Consider a three-input, one-output stabilizable and
detectable rotation system in the time domain
dw(2)/dt = Ax(t) + Bu(t) + I'v,(t),
w(t) = () + v(t),

where % (1) is the state, u(t) is the control input, w (1)

(1)

is the rotational speed,and v, (¢) and v,(¢) are position-
dependent disturbances. The following assumptions are
made in the time domain.

A1) All zeros of the transfer function from u () to
w(t) are stable.

A2) The relative degree of the transfer function
from u(t) to w(¢) is equal to one.

A3) The direction of rotation is unchanged.
Whithout loss of generality, the direction of rotation is
designated to be the positive direction.

Al) is generally satisfied for a rotation system. A2)
is used for simplicity. It is well known that a multi-sam-
pling technique'®’ can be used to eliminate A2). A3)
guarantees the existence of the inverse function ¢: =
1(6) of § = 6(¢). This assumption guarantees that the

stability defined in the position domain is the same as
that defined in the time domain.
The solution of the state equation in (1) is
.
x(ti1) = Al x(g;) + J Al =0 By (¢)dt +
¢

A
J'”e’min”)Fvl(t)dt. (2)

L

[

Considering the relationship between time and the rota-

tional angle

(3)

and setting the sampling period with respect to the rota-
tional angle to be Af: = ;41 - 0; = 0(1;.1) - 9(t;)
= const. , we obtain the following discrete state equation

in the position domain for a zero-order hold:
Aj i+l d@
Xiy1 = €XpP 9 w(a) X +
l9[1—[ Jg.‘n d@ ) ~ d@
Ua,- eXp(A s w(f) Bw(ﬁ)] i +

[ an{ 205 0 85 0

Sampling the output equation in (1) in the position do-
main allows the discrete output equation to be
w; = Va; + vy (5)

(4) and (5) are the discrete form of the rotation system
in the position domain. Clearly, this transformation
makes a linear plant nonlinear. The advantage of per-
forming the transformation is that the disturbances v, and
v, become periodic functions in the position domain. So,
their effect on the rotational speed can be eliminated by a
repetitive controller'* with the same period as that of the
disturbances.
3 Control system design in the position

domain

The configuration of the constant-speed-rotation

control system is shown in Fig. |, where the controller

Controller

Fig. 1 (mfo?l-f-'rgurétion of constant-speed-rotation
control system
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Cy is designed so as to linearize the input-output charac-
teristics of the plant exactly, and the controller
[C; C,] is designed so as to eliminate the distur-
pances and provide the desired performance.
3.1 Input-output linearization—inner loop
design

In order to eliminate disturbances over a wide range
of speeds, the nonlinearity of the plant has to be taken
into account. The input-output linearization approachmis
employed to deal with the nonlinearity . The condition for
the input-output exact linearization is given in [4]. For
our case, the condition becomes

| ::”exp( 4 : &) l5B #0

That holds for almost all sampling periods.
Choosing a @ ( ;) that satisfies

#0, (6)

d Zu]/a

and carrying out the coordinate transformation and the
input transformation

[ ] [@(x)]
O de ]

w - ‘P‘exp(-’l_l s w(0)] %
W= — S —, (D

R % _d@ \ d8 )’
I n.\p(r”'._l“ m{_{-}))m(”) 2

S
i

yields
worlyrel ) ol ]

g

Ni+1

t}(E,-,m,u,-,vl)
w; = & + vy;. (8)
The input-output characteristics of (8) are given by

Wiyl =

ui+1I’JZMexp(AJ:M (0))FU1((9) (0)+”2(L+1)

(9)
They are clearly linear from the new control input u; to
the output w; .

On the other hand, the state 7; is unobservable. To
stabilize the linearized plant, the state 7; must be stable.
That is, the zero dynamics 7;,.; = Q(&o, 75 20,0,0)
must be stable at the equlibrium point ( &, 7;, u;, vy,
vy;) = (&, 70, 10,0,0). The following result is useful

for the stability test.
With a zero-order hold and a small
enough sampling interval, the zero dynamics of a sam-

Lemmal®!

pled system is stable if and only if the original continu-
ous zero dynamics is stable.

We use this lemma to verify the stability of the lin-
earized plant. A simple calculation ( details are given in
[8]) shows that the eigenvalues of the linear approxi-
mate zero dynamics of the continuous plant in the posi-
tion domain are the zeros of the plant in the time domain
scaled by the scaling factor 1/ wg ( >0) .Due to Al) ,all
the eigenvalues are stable. Thus, the zero dynamics is
asymptotically stable. According to the Lemma, a small
sampling interval ensures that the zero dynamics of the
discrete plant is stable. So, (4) and (5) is stablilizable.
3.2 Repetitive control—outer loop design

Let T and T, be the periods of v, and v, , respec-
tively, then, T can be chosen as the least common multi-
ple of T, andT,. For a suitable choice of the sampling
period A , the number of steps of the repetitive con-
troller is L = T/A@ , and the repetitive controller is
1/(1 = Ab). According to the internal model principle,
the outer loop controller C = [ C;, C,] has to contain
the factor (1 — A%) in its denominator in order to elimi-
nate the disturbances and achieve zero tracking error.

Carrying out a coprime factorization on the pulse
transfer function of the linearized plant gives

P=ND', N=A, D=1, N,D€E RH..

(10)

If X,V €]H, are chosen tobe X = A*'and V' =1,
then the Bezout equation XN + [(1 - A)Y' 1D = 1is
satisfied. Therefore, the repetitive controller can be
parametrized as

c=1I[¢C G]-=

[(1=AM) Y —(1=-a) KN K X+(1-A9) K, D] =
[A=29 A=) 1K 22+ (-2 K

K, K, € RH,. (11)
3.2.1 Design of parameter K,

K| is determined by the method proposed by [6]
and[7] to achieve dead-beat control that moderately
restricts the input-output error and the control input with-
in the settling time. It can be summarized as follows.

For step-type command input, the ripple-free condi-
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tions are, the tracking error e(A); = r(d) - y(A) isa
finite polynomial of A ; and the pulse transfer function
from r(A) to u (1) is a finite polynomial of A .

The parameter K; which satisfies these conditions
can be parametrized as

Ki=1+(1-20K; K €RIAlL, (12)

where K can be any polynomial. Thus, we can choose an
appropriate polynomial K, -« O to optimize the transient
response . Let

I_(1 = l_ﬁo + I_i?1/1 + 4+ ’_Cq;lq = S :,_iILAL (13)
i=0
Then we have

I_NK B +1 .
G T=r T ,1_121 - ;‘K1:=Sei'v’
i=0

_ _ _ +2 —
A= (1-) 2 = 1A+ (1-2)%K, 1= > ARAL

i=0
(14)
Here, K 1 is chosen to minimize the following transient
response performance index ;

+2
Ji = 2{|ei|2+p2|Aui!2}. (15)
i=0
3.2.2 Design of parameter K,
Oi+1 0, de do
U= ‘I’J CXP(AL m)ﬂu(ﬁ)m + V(iy41)

(16)
represents the equivalent position-dependent disturbance.

6,

A simple calculation shows that its effect on the rotation-
al speed is

w, = (1 + PCy)"'v = Sv. (17)
Since the disturbances are periodic, a weighting function
W is chosen to be

w=_>1-2a)w, (18)

40
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Fig. 2 Results for nonlinear compensation[!]
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and the goal of elimination disturbances can be achieved
by minimizing the following performance index:
D= WSl = [ W(A+PCY™ | o= 1W(1 -2K) |l .

(19)
4 Simulation
Consider the following plant
Jdw/dt + Dw = Bu + By,
(20)

J=0.1, D=1, B, =B, =1.
The position-dependent disturbance is assumed to be
v1(0)=2sin(0(¢))+sin(26(1) ) +0.5sin(38(t)).
(21)
The number of steps of the repetitive controller and the
sampling interval are L = 36 and A8 = 2x/L = 2x/36
=0.008727rad, respectively . The state space representa-
tion of this plant is
A=-10, B =10, vo=1.
(22)

Following the design procedure in Section 3, we

I =10,

obtain the inner loop linearization controller

J‘Q‘H d@
- Wexp 0 w(8)] %

a2 % df\ _do "~
i+1 i+l _dU
I E )

&

6, w(89)B
~ ( IOAH)
u; — exp{ = = " o,
1086) (23)
1- exp( e )

and the parameters p = 1 and ¢ = 11, and W=1 are
used to design K; and K,, respectively.

The simulation results are presented in Fig.2 and
Fig.5.In addition, the simulation results obtained by us-
ing the design method for linear control'’! are shown in
Fig.3 and Fig.4 (Standard speed:20rad/s) .

40 1
4 -
A-v - ;
0 “ a ' A AA AAAAA
|
0 2 3 4
40 —-® f*
20 5 ’
0=

0 1 2 3 4
Fig. 3 Results for appropriate lincar model]
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In Fig. 2, the rotational speed was first increased
from O to 20 rad/s. After the system reached the steady-
state, the position-dependent disturbances (21) were in-
put. Then, the rotational speed was further increased from
20 rad/s to 30 rad/s, and from 30 rad/s to 40 rad/s.

S
r-

10

0 2 4 6 8 10 12
Fig. 4 Results for appropriate linear model™

For the linear control method, the system loses sta-
bility at low rotational speeds. It is clear from Fig.4 that
the system cannot track a reference input of 8 rad/s sta-
bly. In contrast, the nonlinear compensation method can
even track a reference input of 2 rad/s stably (Fig.5).

From the simulation results, we can see that nonlin-
ear compensation improves not only the stability but also
the transient response of the system.

S Conclusion

This paper presents a design method combining in-
put-output linearization and repetitive control techniques
for constant-speed-rotation control systems. The validity
of the proposed method has been demonstrated through
simulations..
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