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CONTROL THEORY AND APPLICATIONS

Identification of Nonparametric GFRF Model
for a Class of Nonlinear Dynamic Systems ™

Han Chongzhao, Wang Ligi, Tang Xiaoquan and Dang Yingnong
(School of Electronic and Information Engineering, Xi’ an Jiaotong University*Xi’ an, 710049, P.R. China)

Abstract; This paper presents the nonparameiric identification algorithm of GFRF models for a class of nonlinear dynamic
systems with polynomial form. The distinguishing feature of the algorithm is to desire a limited calculating quantity and store
space,and the identification accuracy is high. The simulation results show that the identification algorithm is very effective, and
the obtained model is of excellent generalization ability in general. So, it’ s an approach with important prospect for application.
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1 Introduction

Recent reseaches provide the new train of thoughts
for the nonlinear control system analysis, and have got
some results on nonlinear system identification as well as
practical application (Barrett'!? Schetzen!?! , Billings and
Tsang'3~3), in which the behavior of a nonlinear dy-
namic system can be described by the generalized fre-
quency response functions (GFRF’S) .In the case of the
frequency response function (FRF)of a linear system, the
GFRF’ s belong to the nonparametric model and do not
depend on the input signals, so they can describe the es-:
sential properties of the system completely. The GFRF’ s
can reveal some typical frequency response properties of
nonlinear systems, such as harmonics, intermodulation,
gain compression/expansion, etc. , and the figure show-
ing of GFRF’s can describe the essential properties more
directly .

There are two ways to obtain GFRF model for a
nonlinear dynamic system. One is to calculate it by using
the recursive formula based on the known time-domain

model, and another is to identify it from the input and

output data. Up to now, the types of nonlinear time do-
main models by which GRFR model can be calculated di-
rectly are NARMAX, NIDE and NDE models etc. . The
identification problem of GFRF’ s is more complicated
because there are infinite terms of GFRF’ s for describing
the system completely according to the Volterra function-
al series theory. And the scale of data needed in identifi-
cation will increase exponentially with the system order
and degree increasing.

Just for the reasons stated above, it is still a difficult
problem to identify the GFRF’ s model for a nonlinear
dynamic system, not as in the case of its time-domain
model identification. Compared with the nonparametric
model identification in linear system case, the identifica-
tion of GFRF’s model of nonlinear system is much more
complicated. Therefore, it is of great value to solve the
dimensional catastrophe problem in GFRF’ s identifica-
tion.

Since the beginning of the 80’ s, the nonlinear spec-
tral analysis theory based on Volterra functional series has
been developed quickly.In 1980, the theoretical frame of
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plexity will not increase when the dimension of a system
increase except the longer time of calculation. The disad-
vantage is that the way can only be used in one-machine
system. How to expand it to multi-machine system is one

of our future concems with the field under discussion.
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yolterra  kernel identification was proposed by
Fakhourim . Up to the 90’ s, the algorithm for the sec-
ond-order spectral estimation was described by Cho!®!,
and the third-order spectral estimation by Nam®®! . Now,
the new contributions in utility and efficiency of the esti-
mation algorithms have been madel10-11]

In this paper, a new simplified nonparametric model
identification algorithm of GFRF’ s will be presented
based on the assumptions that the nonlinear dynamic sys-
tem can be described by a three-order and three-degree
model completely. The algorithm needs very little calcu-
lations and store spaces, but is of higher precision and
excellent ability of model generalization.

The simulation results show that this identification
algorithm is more effective, and therefore it has a great
important prospect for application.

2 Description of generalised frequency response
functions (GFRF’s) model

The SISO polynomial nonlinear system can be rep-
resented by a nonlinear differential equation as

DD [an,pl,...’p”ﬂl)”ty(t) +

n=1 pl=0 pn=0 i

b”rP1""vP,lIﬂ_Ij fl Dy(e) « DPau() +

i=lk=m+1

oy LL PP ()] = 0, o

where D is the differential operator, M is the maximum
differential order and N is the maximum degree of the
differential equation, u () and y(t) are the input and
output of system separately, and a,, b, and c, are the
coefficients in the output terms, input terms and cross
terms respectively .

If (1) has a Volterra series solution, then the output
¥(1) in time domain can be represented as

y(t) = iyn(t),

n=1

y.(¢) :j:...rw Aoty

rlu(t - z;)dt;, n € 7, (2)
i=1
Where 17 jg natural number set, {h,(z;,72,""",7,), 10

€ 11t are the Volterra kemels or the generalized impulse
'®sponse functions. Taking Fourier transform to above

®quationg yields ones as follows

MM=FQM)=2H%M)=i%uL

&n(w) - (Zﬂ)—(n—l)j J fz,,(w = ) B
Wy, w,) w(w - Wy =t~ w,) .
a(wz)"'&(wn)dwz,"',dwn, n &1, (3)

where }A), )Afn and u are the Fourier transforms of Vs Y
and u respectively. {h,,n € I} is said to be the Gen-
eral Frequency Response Functions (GFRF’s) of the
system. And fz,, are the n-dimensional Fourier transforms
of the Volterra kemel h, for n =2, which are defined as
ho(wy,yw,) = F(h,(z1,,1,)) =
wa...wa hn(fl»”',fn) .

In]:e"j“’-’idri, n = 2. (4)
i=1

It is clear that { h,,n € I }in (1) and (4) respec-
tively are all nonparametric models. Just like the FRF in
the case of linear system, they describe the essential
properties of the nonlinear system, which do not depend
on the choice of input signals. However, ﬁ,, is the n-di-
mensional complex functions, so the sampling points will
be L" if the sampling points for every frequency variable
are L,and this is the so-called “dimensional catastrophe

problem” .

3 Identification algorithm

Firstly, the assumptions are made as below.

Assumption 1 The input signal is a linear com-
bination of sine signals designed artificially, the frequen-
cy components are all times of the basic frequency. That
is, assuming wy is the basic ferquency, the other fuequen-
¢y components are mwg, m € [T . At the same time, it is
assumed that

u(w(k))50, k=— Nr+1,-+, = 1,0,1,+, Nr-1,
(5)

where Nr is the frequency bend width of the input sig-
nal,and Nr < Ns,and Ns is the number of samples of
the output in time field, which corresponds to the maxi-
mum frequency bend width of the response function.

Assumption 2 The input and output signals are
sampled synchronously, and the selection of the sampling
period and the sample ability Ns must satisfy the sam-
pling law and Ns may be many times of the frequency
bend width Nr of the input signal.

Assumption 3 The dynamic behavior of the sys-



tem can be described approximately with the first three
GFRF’s.
Thus, the input and output data {a(Chog)t,
{y (kwo) !}, which have been transformed into frequen-
cy-domain by using FFT, should satisfy the following
nonlinear functional equation
&(kwo)= fl (ka)A(ka) +

-1

2N Z hz((k—s)w(),

s=-Ns+l

swo)u((k — s)wo) u(swy) +
(2N3)2s-ZM+1r-ZM+1h3((k S—T ) wg, SWo»
tow)u((k - s - wp) i (swo) u( w) 5
E=—Ns+1,,-1,0,1,,Ns =2.
(6)
According to the symmetric and conjugate symmet-
ric properties, it is assumed that the values of f, in the
whole hyperplane w; + wy +*** + @, = » ale the same,
and therefore the functional Equation (6) may be simpli-
fied to be as (assuming 3Nr < Ns)
by (hwo,0)

&(kwo) =i;11(kwo)l},(kwo)+ Ns

E 2((k - s)wg)u(swo) +

s=0
h3(kwy,0,0) Swl S
= 0 L —
(N2 = P
s — ‘L")CU()){L(S(U())II)/(T(U()) =
R e kew
h (kcuo)u(kwo) + u( O)hz(lfwo,())+
11_* 11 * u(kwo
(Ns)? —% b4 ( kwg,0,0).
k =—3Nr+3,+,-1,0,1,-,3Nr - 3.
(7)

Thus, the steps of the identification algorithm can
be described as
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i) Design the input signal and apply it to the real
process, and sample the input and output signals;

ii) Transform the sampled input and output data in-
to the frequency-domain, the Fourier transform sequences
{2 kwo)} and |y (kwo) | are obtained;

iii) By using (7), the estimates of sequences
{hi ko)t 1ha(ke,0)} and {A3(kop,0,0)! could
be obtained according to the equation solution;

iv) Test the generalization ability for the obtained
model; If the result reaches required precision, go to step
v); If not, turn back to step i);

v) End.

4 Simulation example

Consider the nonlinear system as follows
- 0.14%,
the result of identification is shown in Fig.1.

}'/:—15y+u+0.1u2

The generalization ability test is the same as the
following ; two groups of input and output data, which are
not used in identification, are used to test the generaliza-
tion ability of the model.

a) The case that the input is u = 2cos (2.45¢).
Comparing Fig.2 with Fig.3,we can see clearly that the
GFRF model is of very good generalization ability, and
the NN model is not good enough when the system is
excited by a small sine signal.

b) The case that the input is u = 20cos(2.45¢t) .
Comparing Fig.4 with Fig.5,we can see clearly that the
result is still the same as in case a) when the system is
excited by a large sine signal.

¢) The case that the input is

= 25gn(cos(2.45t)).

Comparing Fig. 6 with Fig.7, we can see clearly
that all two models are of excellent generalization ability
when the system is excited by a sgn signal .

6] J R — dB e dB — o e———
-20 T o] ~100{ v _\
‘ ; .
= \/
|
—40L \ —hll{ I -0l .. .
0 4 8 1216 2024 30 0 4 812 16 20 24 28 0 5 1015 20 2530
wyt ws(radfs) w1+ wo+wy (rad/s)
(@ |h@] (b)  |he,0)| (©)  |h@,0,0)]

Fig. 1 GFRF model identificatied result
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Fig.2 —— output of the GFRF model
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Fig. 6 —— output of the GFRF mode
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S Conclusion

The identification algorithm of nonparametric GFRF
model for a class of nonlinear systems are discussed in
this paper. Because the GFRF model reflects the essential
properties of the system, and is irrelative with the input
signal, the generalization ability of the identified model
Can be guaranteed, and therefore the identified model is
reliable . Although the GFRF model is limited to less than
three-order, it can satisfy the engineering desire of sys-
tem analysis and synthesis in general . Design of the opti-
Mal signals will be a main problem in the future re-
Search.
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