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Lagrange System”
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Abstract; The idea of the passive stabilization of nonasymptotically stable motion of the dynamical systems by introducing
supplementary degrees of freedom is advanced for the first time in the paper [1]. The effectiveness of the application to the
study of Lagrangian system is shown by the special example in the present paper, which has a unique scientific meaning. In the

system a nonlinear friction and inelastic potential energy are adopted. It is shown that this problem can also be solved in the non-

linear case.
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1 Statement of the problem

The attitude of a satellite is often controlled by re-
active forces which requires some additional energy. But
the satellite can also be stabilized by means of the rela-
tive motion of some piece of the satellite moving in non-
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ideal fluid as an oscillator with damping. This does not
require additional energy and is called “passive stabiliza-
tion” . Here we illustrate the passive stabilization for La-
grangian system with a specific example, which has a

unique scientific meaning.
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Fig. 1 The special model oiPSM

Let an absolutely rigid body S with mass M perform
plane-parallel movement under the action of gravity as
the parallelogram pendulum(Fig.1) . Vector k is parallel
to the vector of gravity, lines 0, 0, and A, A, are vertical

to vector k during the whole motion. The position of S
in space is determined by angle ¢ (Fig.1). Moreover,
we suppose a block s with mass m is contained in S.

Now we consider two cases. In the first case, s is fixed
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to body S (or is frozen in S ). In the second one, s can
move with a friction ( nonlinear) under the action of
some spring fixed to body S and its moving direction is
vertical to A;A,. The position of the block s to body S is
determined by coordinate © (Fig. 1). Thus, we can
say, u = uo = constant in the first situation and u =
u(t) in the second. Obviously, in the first situation the
equilibrium state defined by ¢ = Oand u = uqis stable,
yet it is nonasymptotically stable. Thus the problem aris-
es: Is the equilibrium state asymptotically stable when s
is defrozen? If it is asymptotically stable, we can say the
problem of passive stabilization is solved. The following
statement will verify that this problem can be solved only
in nonlinear case by the method in the paper [2].
2 Movement equations and their reduc-

tion to special form

The kinetic energy of the studied mechanical system

is

T = %(M* lngz + mu? - 2ml¢usingo),

where M. = M + m. And the inelastic potential energy

of this system is
H=-(Mylcosp + mu)g + %ﬁuz + %Buf‘,

where 8 > 0,3 and f are a coefficients. Block s moves

with an inelastic potential energy .
Ll 144
V, = ) Bu” + 4 Bu”.
Block s moves with a nonlinear friction Q, = —
ait — ayi’, namely, the generalized force which is de-
noted by @, where a; > 0. Thus, the studied mechanical

system has Lagrange’ s equation of second type as fol-
lows

M * I*¢ — mlsingu + M glsing = 0,

mu — mlsingp — mlp>cosg ~

mg + Pu + Pu + ayu + au® = 0. (1)
From Equation (1), we obtain

" sing (mlp*cosp — Mg — fu - Pu’ — aju — ayu®)

u o=
Equation (2) admits the particular solution
=0, u=u and mg - PBuy— Puf =0,

u=u0=%g (3)

If 8=0,
corresponding to an equilibrium state of (2).

Supposing ¢ = x and u = ug + v in perturbed
movement, we can decompose the right side of Equation
(2) to series about perturbation x,%,v,s till terms of
the third order smallness (including the third order) as
follows :

& =— A2% + byww + byav + ¢1x° + oy’ + v,
(4)

=g+ di(ug+v)+ dov + a1x> + 2% +
1 3 o RN, 3
2b1(u0+11)x + 2b2x11+ezv +

flug + )+ -,

where
_ - Mg = B e <|
S T e 7l T
o = Mg(6M + 5m) 5 = ol
s 6IM 2T M,

I(M + mcos’p)

m(M + mcoszgo)

b

M (mipeosp + mgeos’p — fu — fu’ — ayu — agu’)

(2)
a
d]:-‘lg. dz-‘:—ﬁl, 61—'l,
__ @ __B 1 _ &
€y = — f = " P 1"
By introducing variables
X = Ay, P = w, (5)

we have the following equation, which consists of four

differential equation of the first order

% = Ay,
¥ =— A% + prxw + praw + qlxy2 + q2x3 + 0,

U= w,

w = div + dyw — Lix® + Ly + 130? +

Hid®v + fox?w + fsw + ol + o, (6)
where
P1=——‘L, ey —

M, Vg M. Vg
dy=-B-3Bub, L=l =-g, Iy=-3Bu,,
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It is possible to point out that the linearized system
of Equation (6) falls into two independent linear sys-
tems, the first

= v,

J =, (7)
corresponds to a pair of purely imaginary roots of its
characteristic equation, and the second

v = w,

= div + dyw, (8)
corresponds to a pair of complex roots with negative real
parts. According to the conclusion of the known Lya-
punov’ s theorem (see[3]), we have a critical case,
from which it is impossible to obtain the conclusion
about the stability or instability of solution (3) in system
(4) without using nonlinear terms.

3 Constructing auxiliary function of Lya-
punov’s type

Since linear system (8) has eigenvalues of negative
real part (since d; < 0,d, > 0), there exists the defi-
nitely positive Lyapunov’s function V¥ (v, w) such that
its time derivative V¥ (v, w) along Equation (8) is

negatively definite. For example, function

1
VO (p,w) = E(mnvz + 2mpvw + mpw?)
(9)
satisfies those conditions, where
B+ 3B uf + ] a'|
my = 5 5
a | ﬁ + 3ﬁ
. 1
M = 3
. B+ 38"ug
B +3pup + 1

My g 3 ] .
a  (fF + 38 up

r_.él 'I_E ro_ % L
P mg P =mg 1= mN g

(B +3Bud +1)?
. 0, s i IO Ratien
smee my; > myy Moy myy a/ (‘81 + 3‘8’11,2)

W > 0 and its time derivative V® (v, w) along
Equation (8) is
V@ (v, w) = - (A%% + w?) < 0. (10)

Moreover, according to the methodology of critical case

+

of n pair purely imaginary roots [2], we construct aux-

iliary function V (x,y,v,w) as follows;

V(z,y,v,w) =
121(x2 +9) + VP (v, w) +

V(a)(x’ysv’w) +
VO (x,y,0,w), (11)
where V¥ (v, w) is defined by formula (9), and

V(r)(x,y,v,w) = Z azj’knxi}’ivkw", A

ivjrktn=r
(12)
are the forms of the third and the fourth orders about x,
¥,v,w, here @, are constant coefficients and its algo-
rithm will be given later, p and ¢ are arbitrary constants.
The derivative V(x,y,v,w) along Equation (6)
by virtue of Equality (10) has the following form:
Vix,y,v,w)=— q(A%% + wh)+ VO (x,y,v,w)+
V(4)(x,y,v,w) oy,
where V* and V® are the forms of the third and the
fourth orders respectively defined by

VO (x, YU, w) _)tyaV(r) - Ax ag;r) +
av( r)
Yo
W(’)(x,y,v,w), r = 3,4,
(13)
where
W(3)(x,y,1),w):

py(p1x1)+p2xw) +
q(mpv+mpw)(— g +gy*+1;0%),  (14)
W(4)(x,y,v,w)=
py(qx’+ qixy?) +

q(m12v+m22W)(f1x2v+f2x2w +
av(3)
f3w +f1) )+(p1x1)+p2xw) 2y +

av(3)
(- gx?+gy*+ 130%) 3 (15)

We can seek the coefficients of form V® (x,y,v,w)
from the condition

(3) (3) (3)
i7(3) 9y av av
W (x,y,v,w) =2y e - Ax o +w T
+ W(s) = O,
(16)

where W® is defined by formula (14).
According to [3], this equation by the form

Vv (g, ¥,v,w) has a unique solution.



Substituting V> (x,,v,w) (defined by Equation
(12)) into Equation (16), we obtain coefficients of
V(a)(x,y,v,w).

For the sake of convenience, we study firstly the
situation of 8 = 0 (In the next paper we will study fur-
ther the situation of 3 7 0 ), thus we obtain

axor == Qo1 = QP + g (17)
where ,
4,2 - 508"
=M T A
(18)

2
A=, @ Ly
m m

and we can see that all nonzero coefficients of V' are
the function of arbitrary parameters p and ¢. In

W (x,y,0,w) = Z wijknxiij"w", (19)

i+j+k+n=4

we only need to find out the coefficients way , wosn s
Wy, Which are necessry to the solution of the problem
of passive stabilization.

According to (12),(19) and (15), we find

Wa000 = — Q01> Woa00 = @01 »
(20)
Wxpo = @01 — a1
and ayy » agyy are determined by the relation between
(17) and (18).
Now we can seek the coefficients of form V¥ (x,

y,v,w) from the condition
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Fig. 2 The satellite can be stabilized
by means of additional energy
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3V(4) i Ay
ax M dy i

ayw =
W T+ (d1v + dyw)

VA (x,y,0,w) = Ay

av(4)
dw T

W (x,y,0,0) =
Ca® + y*)%, (21)
where V¥ and W' are defined by Equations (12) and
(19) respectively.
From the lemma of [2], there exists a unique C,
in which Equation (21) has the solution by the form
V¥, and also

C = %(31,040“) + Wy + 314)04(x)), (22)

or by virtue of Equation (20)

1
c =Z(am1 = ayor) =

. .
- 5 (ap + ag) = - pC, + qC,.

According to Equation (18)

1

1
CrER o SR e >0 (23)

2 % g =~
Thus we obtain

V =L+ + qv?(v,w) +

VO (x,y,0,w) + V¥ (x,y,0,w),

(24)
where the coefficients of V) are linear functions of arbi-

oh .
23 spring
g
=
= -
z
block

satellite

@#" camera

objective
on the ground

Fig. 3 The satellite can be stabilized
by means of the relative motion
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trary parameters p and ¢ as those of V¥ and its deriva-
tive along Equation (6) is
V= - q(A%% + w?) +
(- pC, + gC) (x> + y*)2 + =+,  (25)
where the ellipses denote infinitely small terms whose
orders are higher than the fourth.

So the particular solution in Equation (3) is asymp-
totically stable. This shows that the problem of passive
stabilization about oscillating of body S is sloved by in-
troducing supplementary degree of freedom which is de-
termined by coordinate « (namely, block s is defrozen) .

We mark that the oscillating stabilization of the
studied system is realized without supplementary sources
of energy.

Remark We point out that if we use a geosta-
tionary satellite to take a picture of a certain object on
the ground, it is very important for the camera to take
aim, namely, the motion of the satellite must be asymp-
totically stable, Usually, the effect brought by a small
perturbation is removed by the reaction of a jet stream,

which is produced by burning fuel, but the astronautic

fuel is very expensive (Fig.2, Fig.3). The obtained re-
sult by us shows that the satellite can also be stabilized
by means of the relative motion of some piece of the
satellite moving in a nonideal fluid as an oscillator with

damping and this does not require additional energy.
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