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Abstract: This paper defines the concepts of the generalized left inverse, the generalized Fourier transform and the square
root of matrix. Meanwhile, it deals with singular distributed parameter systems described by coupled partial differential equations
with singualr matrix coefficients. As to the singular distributed parameter systems, the initial-value problem are considered on the

basis of the generalized Fourier transform theorem. The solution of the systems is obtained from the method presented here and

the possibility of determining acceptable initial-value conditions is also discussed.
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1 Introduction

Coupled systems of second order partial differential
equations appear in the study of the temperature distribu-
tion in a composite heat condu\ctor[1 -3 in signal propa-
gation in a system of electrical cables'?'and in magneto-
hydrodynanlics[3]. It is also shown that the same prob-
lems are of interest in the area of distributed parameter

systems!~ ¢

. Recently initial-boundary-value problems
are considered in the light of both the singular I-D sys-
tems theory and the Fourier approach to distributed pa-
rameter systemsm , the analysis is based on the separation
principle which breaks the problem down into two 1-D
problems: an initial problem for a 1-D singular system in
time domain and a two-point boundary-value problem for
a second-order system in the spatial domain, but the con-

vergence of solution is not solved. It only obtains the for-
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mal solution.

Initial homogeneous problems are considered in the
light of both the singular 1-D systems and the generalized
Fourier transforms to distributed parameter systems.

Trzaska and Marszalek W have discussed initial-
boundary-value problems of the singular distributed pa-
rameter systems using the separation principle in [4]as
follows

Consider the following system for y (r, x) € 12",
A,BCi"*"

ax> ~ T ar’
y(£,0) =0, y(:,1) =0,
y(0,x) = F(x) € B",
detA = 0, detB =0, det(Bs + A) = 0.

(1.1)
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Let us assume that due to separation principle, the
solution of Eqn. (1.1) can be represented as
y(t,x) = G(¢t)H(%), (1.2)
where
G(t) € ™", H(x) € R".

The solution of Eqn. (1.1) is the following
y( t,x) = z sin( K %x)exp( = /\kl_?D;lt)BEDVk ,
k=1

Vke]Rn’ k= 1’27"" (1-3)

jsin(K%x)BI_i’DVk = F(x). (1.4)

k=
Its substantial problem, the convergence of the solu-

tion is not solved, but the authors only discuss a class of
singular distributed parameter system.

The separation principle ( the Fourier approach ) is
invalid for the initial-value problem and other distinct
type singular distributed parameter system. Therefore, we
present the generalized Fourier transform approach.

2 Preliminaries

It is well known that the singular parameter system

for x(t) € &"
Ex + Bx(t) =0,
x(t,) = Co,
where E and B are constant matrices of appropriate di-
mensions, Co € K" and det E =0.We have the follow-
ing unique solution
x(1) = exp(— E’B(¢ - t9))EE°Co, (%)
where E = (AE + B)"'E,B = (AE + B)™'B and in-
dex E=k.

Definition 2.1

k,YEM,(C) and

(2.1)

Set A€ M, (C),index A =

VA = fio Vi € () ImA" = Tma*

is satisfied, then Y is called a generalized left inverse of
A for f;.

Where £, = (fisofoirofu)' s Mu(C) is the
space of matrix.

Definition 2.2 Set A€ M,(C),index A = k.
Y€ M,(C) and YAf = f.f = (fisforafu)ofi €
TmA” is satisfied, then Y is called a generalized left in-
verse of A for f.

Corollary 2.1 If A€ M, (C),index A = k,
then AP is a generalized left inverse of A for f.

Definition 2.3 If B> = A, then B =Y A is a

square root of A, where A€ M, (C),index A = k.
Definition 2.4 If F(x)€ M, (L( - ®,®)),
then

i
v 2

Jo_owF(x)exp(— iAx)dx = F(})

(2.2)
is called Fourier transforms, F()) is called image of
Fourier transforms of F(x) .

Theorem 2.1 (Fourier integral theorem)
If
F(x) € M,(L(- ,®) ] C'(- ®,®)),

then we have
(FQA))' = I%Lrg]ﬁ'(A)exp(iAIx)dx = F(x).
(2.3)

The formula (2.3)is called inverse formula of
Fourier transforms.

The properties of Fourier transform:

1° Linear propetty.

If Fi(x) € M,(L(~ ®,®)),a1,a, € C, then

(a1 Fy + aaF3)" = aiF) + arFs. (2.4)

2° Differential property.

It F(x), F' (x) € M,(L(-,0))1C(- e,
® )),then

~

(45) - ar. 2.5)

dx
3° Multiplied polynomial property .
If F(x),sF(x) € M,(L(~ ®,)), then

~

(fllf) = (M), m=1. (2.6)
X
Corollary 2.2 If F(x),, F"(x) € M,(L(-

°°’°°>) ﬂ C(— °°,°°)>, then

~

(%) = GO)™FQR), m=1. (2.7)
4° Translational property.
IfF(x) € M,(L(- ®,)), then

(F(x - a))" = exp(— iAMla)F(X). (2.8)

By Corollary 2.1 we have
5° Matrix property.
If F(x) € M,(L(~ ,%)),A € M(C),
AF(x) = F(x)A, then
(F(x))* = APF(QAP),
where index A = k.

6° Symmetry property .

(2.9)



860 CONTROL THEORY AND APPLICATIONS

IfF(x) €M, (L(— % oo)) then
(F(x))"= F(-x).

7° Convolution property .

If F(x),G(x) € M(L(— ®©,0)), then

FxG(x) =

(2.10)

f:mx ~ )6()de € My(L(- w0, )

and
(F*G) = V2rkC. (2.11)
Lemma2.1 A€M, (C),A isa generalized
left inverse of A
D j exp(— sz)dx

is integrable, then
f exp(— Ax*)dx = c,,

where C| is constant matrix .
2) If A possesses the eigenvalue of positive real
part, then

J exp(— Ax?)dx = v APr |

where A” is the Drazin inverse of A .

Proof 1) is obvious.

[ exp(— Ax?) = 2{0 exp(~ Ax?)dx = 2K,

where K :j (- Ax®)dx.
0

Let
I(1) = J:

obviously we have

exp(— Ar(1 + 2%))
1+ %2 {

1(0) =§1, lim/(t) = 0,
(D) =A] "exp( A1 + 22))dx
0
- A[‘%exp(— At)fo exp(- Au?)du =

1
- AKt™2exp(- At).
Integrating both sides of equality from 8(0>0)t0M,
then

(M) - 1(8) = - AKJ tZexp(— At)de =

2AKfmexp( - Au®)du.

Let M > o ,0—=>0%, by Corollary 2.1 we have

therefore
f expAx?)dx =/ APr

Example 2.1  Suppose

e - 42)
73 Xp 4; )

extract I (A), where A is a constant matrix, a > Qis g
constant .

F(x) =

F(A,I;) =

- @exp(_ 44,

4
exp(— iAlx)dx =
e enl 2]
T SV T A vey i
AP dF (A, 1)
T2 dA

therefore

A =-20AF(2,t),

F(0,t) = v A%4x.
By Corollary 2.1 we get
F(a ,1) = exp(— AA%t).,
3 Second-order singular distributed para-

meter perturbation systems
First, we consider the following system for
Z(%,t) €L, E,B € M, (C),

[EQZQ 93 12 7(x 7 (x,)

{A” _(U"'_{'R,_f )

+ QZ(x,1),

1 ~® <x< oo, =0,
Z(%,0) = ¢(1), o(x) € ir,
(3.1)
where
det £ =0, detd =0, det(AE - A) # 0.

The above problem has not been analysed. In this
paper we propose a method of analysing Eqn. (3.1) , our
analysis is based on the Fourier transform method .

We shall assume that there exists a A such that (AE
- A) is invertible. Then (3. 1) becomes

EACYD NI _(,1 t)

A_

5, E +QZ(x t),

_00<x<00,

o(x),

Tn

Z(X,O) = ¢(x> DA

(3.2)
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where
= (AE - A)'E, A = (AE - A)7'4,
(E"A)° = HAP,
Taking Fourier transform of both sides of (3.2)
with x, we have
E4EAat) L 2dr(i + 02000,
Z(2,0) = ¢(A).
(3.3)
By formula ( * ), we get
Z(A,t) = exp(EPQr — EYAN?t)EE"p(2).
Taking inverse Fourier transform of both sides of
the equality.
Z(x,t) = (exp(- EPAA?t) EEPp(1))".
From Examples 2.1 and (2.11),we obtain
(exp(— EPAA*t)EEP9(A))" = (gp)"

where
EA? EAPx?\ -~
st « B - E )
therefore
2(,t) = |7 K(a- t0p(DdL, (3.4)
where
K(ﬂ? t) =
v ’E D) EZ_D?CZ D
2v mexp(E Qr - P )EE , t >0,
0, t < 0.
(3.5)

The formula (3.4) is the solution of initial-problem
(3.1),when ¢(x) satisfies some conditions.
Theorem 3.1

tion in ( — o, o ), and it is bounded, then the unique

If ¢ (x) is continuous vector func-

solution of (3.1) is given by the formula (3.4) if and

only if v/ AAPEEp(x) = @(x).
Proof The function

2(e,0) = | Kz - £.0)0(0)d,

as t >0, Z(x,t) is infinite-time which can take arbi-
trary time derivative with respect to x and ¢ in integral.
Therefore as ¢ >0, we have
= 3 Z (%, t)
at
w FAD 2
I izl o E5=0),

EVE JARE, B =00

1 DA
2 e exp(E Qt— 41

(x §—E VE  APEAEEP|o(£)dt =

] AP (o
oo 220,
)2
D 2ED
VAP VE B’E 8J7n5/2
exp(ED@t— EAD(Z[ )2)X
AP VAP VE EBPEPle(¢)de,
(3.6)
i PZ(x,t) _

A 42
Jw [2/_ > exp( E°Q: - EAD(L— ILX)
<—LA<EAD>2f V APEEP -

exp( E'D(_)t = %ﬁ) X

-1
4 737

AEE /TR e (0)dt =
£)? =, EAP(x-0)?

j [w—m p(EDQ“ Y )x
e =
AP «/P)\/E_E3ED - m .
exp(ED@t— EAD(L_ )2)><
VAP VE E2EPle(8)dt.

By (3.6) and (3.7),we get

= dZ(x,8) = 3*Z(x,1)

E Ex =A 7"+QZ(x,t).

(3.7)

Namely

aZ(x t)
dt =4

PZ(x,t)
J x>

+ QZ(x,t).

In the following, we shall prove
lim Z(x,t) = go(x)
0’

L X
Set N = a2 , lhen
%

241
Z{xit) B VE f;_:;if’EED .
Vis
waeXP(EDat - P?EA”) o (5 + 24 1p)dy.

By the boundedness of ¢(x) ,as ¢ > 0, the integral is

uniform convergence with respect to ¢, therefore
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j:exP(ED()t — 7?EA") (% + 24 tp)dy =
v AAP VEEPp(x) = ¢(x).

From the above statement, we can see that the solu-
tion of Eqn. (3.1) in the form of integral is convergent
and unique. The applied range of the generalized Fourier
transform approach is wider than the separation principle
in singular distributed parameter systems.

In other papers, the approach of using the general-
ized Fourier transforms can be used to deal with other
distinct types of singular distributed parameter systems.
The boudary-value problems and initial-boundary-value
problems will be discussed.
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