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Abstract: This paper is concemed with the problem of airplane landing under the influence of wind disturbance. By

combining the H,, optimization method with the structural pertuwrbation approach of large-scale systems, a hierarchical H,, con-

troller is developed to guarantee the robust stability of the system. Since the system matrix is not invertible, a new method is

suggested to get the perturbation matrix. The application to flight control shows that the influence of wind disturbance can be re-

strained by using the new controller.
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1 Introduction

The study on airplane landing control is of great
importance to promote the efficiency of air transportation
and ensure the flight safety. At present, most problems
of control, navigation, communication and management
in the cruise period of airplane have been solved and also
a lot of flight tests have been done to approve the re-
sults. However, there are still many unsolved problems
in the period of airplane landing, such as control and
communications under wind disturbance. Even few theo-
retical results have been obtained.

Disturbed by wind, the flying airplane may some-
times deviate from its flight path, which may lead to a
flight accident or a delay in the landing process. Present-
ly, the research work concerning this problem is mostly
focused on two aspects, i.e. Linear Quadratic Gaussian
(LQG) or H, theory and wind estimation. For LQG,
disturbance inputs are modeled as white noise, however,

in most cases the effect of disturbance is biased and dif-
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ferent from what has been assumed in LQG. Since wind
disturbance is stochastic and uncertain, it does not fit
very well into the framework of LQG. Moreover, in
many circumstances especially for robust control, model
uncertainty must be taken into account when we design
the controller. The effect of model uncertainty can not
be suitably modeled as white noise. For the reasons
mentioned above, in this paper, the hierarchical H,, op-
timization method is applied to design a robust controller
for the problem of airplane landing control under wind
disturbance.
2 Problem description

For airplane landing control, flight state vector can
be chosen as

x = [hyu,w,q,0]",
where h is flight altitude; u and w the velocity compo-
nents along x axis and z axis respectively; g pitch rate,
and ¢ pitch angle. The input vector is
u = [4,,8.]",
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where &, and &, are the deflections of elevator and ca-
nards respectively .

Thus, the model of an airplane can be described by

the following linear, time-invariant system .

x(t) = Ax(t) + Bule) + (1),
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y(t) = x(t),
where the signal £(¢) contains all external inputs, in-
cluding disturbances, sensor noises, and commands; the
output z(¢) is an error signal; y(¢) is the observation
vector and u(t) is the control input vector; A, B, I are
the system matrix, input matrix and disturbance matrix,
respectively; C and D are weighting matrices. For the
problem (A, B) is controllable, and (A, C) is observ-
able.

Our goal is to design a linear state feedback con-
troller

u(t) = Kx(e),
to make the system satisfy the following performance
specifications

1) The closed-loop system is internally stable, i.e.
A + BK is stable.

2) The closed-loop system satisfies

| Te, () | 0 < 7,
where T, (jw) is the transfer function from £ to z; ¥ is
a positive constant which is selected to be less than 1 to
guarantee the robust stability of the system.

If the upper bound of wind disturbance is known ,a
robust feedback controller can be designed by using the
H. method. However, since airplane is a high-order
and complicated dynamic system, we have to solve a
high-order algebraic Riccati equation if the concentrated
H.. method is used directly, which may bring us a large
quantity of computation work and make the selection of
weighting matrices difficult. To avoid this problem, in
this paper, we combine the H, optimization method
with the theory of large-scale systems and propose a hi-
erarchical H,, optimization method based on structural
perturbation approach.

3 Design of hierarchical H,, controller

The main idea of the hierarchical H,, optimization

method is to divide the large-scale system into several
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lower-order subsystems. For each subsystem, H, opti-
mization method is used directly to optimize the subsys-
tem and a coordinator is designed to get the near opti-
mality of the whole system. Therefore, the optimal con-
trol of the ith subsystem can be described as
w (1) = uf(e) + uf(s),

where u; (¢) is called local control, which is solved by
the ith subsystem without considering the interconnec-
tions of each subsystem; u#( ) obtained from the coor-
dinator is called global control or rectification control
which can compensate the influence of subsystem inter-
connections.

When the system is working, structural perturbation
may occur because of disconnections, reconnections and
interconnection variances of these subsystems. The
structural perturbation approach emphasizes the reliability
of system with structural perturbation. We can obtain the
rectification control by solving the perturbation matrix
BF of the block input matrix B. Under this condition,
the system can be reconstructed as

2(t) = (4 + G)x(t) = (B + BP)Kx (1), (1)
where A , B are block matrices constructed by the corre-
sponding matrix of each subsystem, i.e.

A = block-diag{A;,4,,+, Ay},
B=[B B :BylY
G is a interconnection matrix of the system.
3.1 Optimization of subsystems

It is assumed that the original large-scale system
has been divided into NV connected subsystems. The ith
subsystem can be described as
i =124, SR N

where A; and B; are the system matrix and control matrix

A= Aixi + Bl-u,- + Li?]i + I-‘iEi’

of the ith subsystem respectively. 7, is the interconnec-
tion input vector of the ith subsystem and L; is the coef-
ficient matrix of 7,. The performance specification of the
subsystem is

IHI ;< 7.
Solve the following N independent algebraic Riccati
equations
PA; + AP, + P(y; I - BRI'BD)P, + 0, = 0,
i EMIL25 RN
It (A;, B;) is controllable, there must exist a positive

constant ¥, and when ¥; > 7, the ith subsystem has
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only one positive definite solution P;. Thus we can ob-
tain a group of positive definite solutions P;,i = 1,2,
-, N.
Let P = block-diag{ Py, P,,"**, Py},

R=R, i=12,~,N
and the local optimal feedback matrix K™ can be ob-

tained as the following
K" =- R'B'P.
Next, the hierarchical method will be used to get the
pear optimal solution of the whole system.
3.2 Solution of the perturbation matrix
In this subsection we would like to solve the pertur-
bation matrix B” to achieve completely closed control.
The following lemma shows how to reach the goal:
Lemma 1 For nonsingular matrix (4 + G), if
there exists a diagonally-symmetric matrix S satisfying
the following Lyapunov equation
S(A+6)+(A+6)"S+G'"PA-A"PG =0
(2)
and a matrix P = (S — PG)(A + G)~! can be given to
make the matrix ( P + P) positive definite, the perturba-
tion matrix can be solved by the following equation
B” =— (P + P)'PB. (3)
The performance specification of the whole system can

be shown as
J(tos2(10)) = 35" (10)(P + PYaCao).

Proof If {(A + G),(B + BP)} is controllable,
let V be the positive definite solution of the following al-
gebraic Riccati equation

V(A +G)+(A+ 6V~
V(B+B)R'"(B+B)"V+Q =0 (4
Then the closed-loop control
a(t) =- R (B + B)'vx(4), (5)

will make the system have the minimal performance

specification %xT( to) Va (o), and the feedback system

can be denoted by
#(1) =(A + 6)x(e) - (B + BR -

(B + B")Tvx(1). (6)
Compare Eq. (1) with Eq. (6) and it can be seen that
R-'(B + B")"V = R'B'P. 7

Substitute Eq. (7) into Eq. (4). Considering that matrix

P is positive definite, we have

VG + GV + AT(V-P) + (V-P)A =0. (8)
Divide Eq. (8) into two diagonally-symmetric parts and
it can be seen that

PG+ (V-P)A+6) =S, (9)
where S is a diagonally-symmetric matrix. Substitute
Eq.(9) into Eq. (2). Considering that (V — P) is a
symmetric matrix, we can test that S satisfies Eq. (2).
Let

P=(v-pP)
and substitute it into Eq. (3). Then Eq. (8) can be
achieved.

For the actual plant we use in this paper, the sys-
tem matrix (A + G) is not invertible. So Lemma 1 can
not be used directly. To solve the problem, the follow-
ing result is given.

Let
A=(4+6),
and X=(V-"P).
Transpose both sides of Eq.(9). Since matrix (V - P)
is symmetric, it can be seen that
AX = B, (10)
Eq.(10) can be written in block form:
[ 0 0 ] [Xll(lxl) Xia(ixa) B
;11(4><1) ;12(4x4) N

B = (S-PG)T

Xoiax)  Xoniaxe)

PN
B1(4x]) B2(4x4) '
Then we have

;11)(11 + ;12)(21 El,

A1 X + AyXp = By,
Since X is a symmetric matrix, if X;;is given definitely,
X i.e. (V — P) can be determined. Thus, the pertur-
bation matrix B” and the rectification feedback matrix
can be achieved from Eq. (3). The rectification feed-
back matrix is

K¢ =- R'BTP.
Finally the suboptimal feedback matrix of the whole sys-
tem can be obtained as
K=K"+K =-—R (B +B")'P.

Iy E __ ! B, _ ] | y
Yowe gyt Pilot model | 5, _ | Aircraft |
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Fig. 1 Control block diagram
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The control block diagram is shown in Fig.1.
4 Simulations

In this section, some simulation results are given to
test the performance of the hierarchical H, controller
presented in Section 3. The original Sth-order system is
divided into two subsystems: x; = [h,u,w] ,x, =
[¢,0]", one is 3rd-order and the other is 2nd-order.
The two subsystems are

* Subsystem 1

[0 0.087 -0.99%
Ay =0 -0.17 -0.003],
L0 -0.255 0.008
0 0
B, =(10.334 -0.556],
L 0.692 1.09
[ 0.087 -0.996
ry=| -0.17 -0.003|,
L-0.255 0.008
om)
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Fig. 4 The response plot of @

Fig.2 to Fig.4 are the response plot of h, 4 and 4,
respectively. From them we can see that the speed and
steadiness for airplane landing is fairly good.

5 Conclusion

A hierarchical H,, method is presented in this pa-

per. The numerical accuracy and computational efficiency

[0 0.001 -0. 125]
"“lo o 0o 1
* Subsystem 2

-1.47 0 - 19.8 2.47
o [P l
1 0 0 0
0 0.608
0.001 -0.125
l’zz[ 0 0 ], Ly =| -7.014 -9.773|.
200.01 - 0.855

For the actual plant used in this paper, it can be

shown that

- A O o B, 0 I,
O R I TS )
0 AZ B2 Ll 0

Apply the hierarchical H, controller to the actual flight
control system, the following optimal feedback matrix
can be obtained as
0.017 -1.301 -2615 126 -0.24
“loime 0 120 -137 -6l

The simulation results can be shown by Fig.2 to Fig.4;

P h (m/s) ;

i i e W s
20 40 60 80 100 120
Fig.3 The response plot of

0

are increased since the solution of high-order Riccati
equation is avoided. The new approach is applied to air-
plane landing control and the satisfactory simulation re-
sults are obtained. It can also be applied to solve other
control problems related to model uncertainty .
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