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Abstract; The underactuated free floating robot in space is nonlinear systems where velocity and acceleration constraints

are both nonintegrable,, therefore it is a second order nonholonomic system. In this paper, by invesligating the system dynamics in

depth, we propose a simple velocity-based method to control the unactuated joints and a multi-step composite strategy to imple-

ment orientation tracking tasks. The proposed algorithm is of significance in controlling space robots when some joints fail to

function, or they are intentionally set to be passive for energy efficiency and safety purposes.
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1 Introduction

The control of a free floating space robot with pas-
sive joints is an important problem in spacecraft mainte-
nance, high efficiency control and fault tolerance design.
It, however, has not been well adderssed in collections of
the related work in [ 1,2] . Compared with other systems,
it is one of the most general,, and the most diffcult under-
actuated systems.

Most work on the nonholonomic control aim at the
systems with only the first order nonholonomic con-
straints. In space robot control >4 »people are only inter-
ested in kinematic planning without much dynamics con-
sideration. Kolmanovsky and McClamroch!s proposes an
algorithm with a back-stepping method for planning and
controlling a two-joint fiee-floating robot with fully actu-
ated joints. An angular momentum conservation is con-
sidered in their paper. By using the designed feedback the
subsystem of acceleration ( torque ) conrtol can be simpli-
fied to satisfy the condition of back-stepping method . But
this is not feasible to our system where only partial joints
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are actuated. Morin and Samson'®! also proposes a back-
stepping method to implement the stabilization of altitude
of a spacecraft controlled by two control torques. Their
model can also be simplified to two strictly cascaded Sys-
tems. Based on the properties of homogencous systems,
the constructed time-varying controller guarantees the ex-
ponential stabilization. Petersen and Egeland’ s method!”’
is similar to [ 6], except that a global coordinate transfor-
mation is constructed to allow the system to satisfy ho-
mogeneity . Their model of an underactuated surface ves-
sel is a special case of systems with second order non-
holonomic constraints, as the inertial matrix is constant
and the second order constraint contains only velocities as
variables.

As will be deliberated in the next section, the Sys-
tem we discuss here contains a second-order nonholo-
nomic constraint in which the configuration variables can
not be omitted. Therefore, the back-stepping  torque
control method can not be directly applied fo our system.
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Moreover, the existence of drift terms destroys the equiv-
alency between accessibility and controllability so the
controllability analysis becomes extremely difficult. To at-
tenuate the effect of drift terms, a high gain input is con-
sidered in [8],but it bas limitation in engineering appli-
cation. (9] proposes a control Lie bracket based method
for velocity constraint with a drift, but it is difficult to
generate the suitable control Lie bracket for our system
in the torque control level. For the second order con-
strained systems (robot with passive joints), Nakamu-

ra" "I proposes a chaos analysis, Arai'!! 'presents a specif-

ic open loop planning method, Oriolo! %!

suggests an ho-
mogeneous system ( nilpotent ) approximation algorithm.
However, all of these approaches have limitation in
dealing with practical problems.

In this paper, by investigating the system dynamics
in depth, we propose a simple velocitybased method to
control the unactuated joints and a multi-step composite
strategy to implement orientation tracking tasks. The rest
of this paper is organised as follows: Partial linearization
and model simplification are presented in Sectin 2. The
control strategy is proposed in Section 3.To demonstrate
the feasibility of the proposed strategy, a simulation
study is given in the following section.

2 System description

As shown in Fig.1,a planar four-link space robotic
system (a three-link robot mounted on a space vehicle)
with one passive joint (the last one) is considered as an
example to illustrate our method.
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Fig. 1 Four-link space system

The system dynamics can be described as [2,12]
(mn(q) mplq)  ma(g)\(q T

my(q)  mp(q) ma(Q) || g2 |+ nlq.q) =| 2],

]Lmal(q) m(q)
S g+ $2(q)qz + S3(q)gs = 0,

m_g(q) q; 0

(1)

here §€ I is the orientation of the first body relative to
the inertial coordinate system, ¢ = (qi,q2,q3) € i3
and r = (¢, 7,,0) € 23 represents the vector of joint
coordinates and the vector of generalized forces respec-
tively, {mg! is the 3 x 3 inertial matrix,and n with di-
mension 3 x 1 is the centrifugal and Coriolis term. {my|
and n are described in detail in Appendix of [13].
There are two nonholonomic constraints of different
orders included in these equations.One is a constraint of
first order( the velocity ) which represents the relationship
between the orientation and the shape of the space robot
g = Sl(q)é1+52(q)t} + Sa(q)ds- (2)
Another constraint is that of the second order (the accel-
eration) which occurs during the robot motion

mal(q)‘.I.I + m32(q)('1'2 + mx}(q)('lla + ng(q ,q) =0.

(3)
Choosing the generalized forces = such as
= B M) (
Ty =\my — myzmaz M3 /U + \Mypy —
-1 -1
my3ma3 maz)uz + Ny - Mj3maz Ny,
= (( ) (
Ty =My — MyMaz M3 ) + \My —
Ly -1
mp3ms3 m32) Uy + Ny — Mymaz N3,
(4)

with u = (uy,uy) € 12 an auxiliary input vector, the
above dynamic equations (1) can be re-expressed as a

partially linearized one

q1 = vy, 42 = v, q3 = v3,
Je = Sl(q)")l + Sz(q)vz + 53(11)1),%
V’] = U, :

7.J3 = Cl(q)ul + C?_(q)uZ + 6'3((])’

(5)

Uy = up,

where C,(q), C,(q) and C5(¢q) are expressed in detail
in Appendix.

The purpose of this paper is to drive the robot from
one point to another with zero velocity at the desired
point. This implies that the system is controlled to move
from (q(t9),q(t0),0(19)) = (¢°,0,6°) to (q(zp),
q(t),00e0),0(1)) = (¢,0,0/,0) with ¢° = ¢/ and
0 =< 0.

3 Control strategy

Because of the existence of two constraints with
two different orders , it is very diffcult to implement the
point-to-point control directly. We propose the following
strategy to handle this case.The control strategy will be
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divided into three phases;

1) Actuated joint control phase: control the actuated
joint 1 and joint 2 to move and stay at their own desired
positions at time #;;

2) Shape phase: design a control algorithm to con-
trol the unactuated joint 3 to move and stay at its desired
position at time ¢,(¢; < ¢, < ) and let joint 1 and joint
2 go back to their desired positions at ¢, ;

3) Orientation phase: design another algorithm to
move the orientation angle § to its desired position ¢ at
time #; and let the three joints go back to their desired
positions at this time. The whole procedure can be de-

scribed more clearly as

t =1 t =1
0:1(0) = 4 q1(2) = ¢4
7(0) = qg L q2(2,) = q’é i
7:(0) = 4¢3 qa(t1) = ¢3(ty)
v(0) = 0 v(t) =0
. 9(0) = 6° 6(e) = 6(sy)
t=t, t =t
‘Il(lz) = ‘1[1 41(tf) = q/1
q2(1p) = q’E ‘Iz(tf) = ¢
g g3(ty) = q’é = (I3(lf) = qé ’
v(t,) =0 v(tf) =x0

6() = 6(2)) \o(y) = o
With the partially linearized model (5), the first phase
can be implemented easily by using some simple con-
trollers. For example, a linear feedback of the form

{ugl) =~ kyvy — k(g1 - ¢1),
ugl) = — kyvy - k22(112 = ‘Ié),
with k; > 0,i,j = {1,2} is a suitable choice for this

(6)

phase. For the other two control phases, we will present
two different control strategies to be discussed below.
3.1 Shape control phase

In this phase, the unactuated joint is controlled to
its desired target with zero velocity, while the two actuat-
ed joints are controlled back to their own positions , from
which motion starts at the beginning of this phase. By
the end of this phase, the shape of the space robot has
changed to its desired shape configuration. As mentioned
in the first section of this paper, the control of nonlinear

systems with second-order nonholonomic constraints has
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not been addressed extensively. Limited cases discussed
in publications lack generality in implementation. There-
fore, we first study the system model to investigate
whether the existing methods can solve our problem.
For the reason of simplicity, we treat the system in
this phase in a reduced oredr form
‘jl =u Ul éz = V2, i]a = V2,

v = u, (7)
1.13 = Cl(q)ul + C(qluy + Cs(q,v).

It is easy to find in the Appendix that C;(g)and C,(q)

contain the variables g alone (exclusion of v ), which

U1 = Up,

implies that with the control vectors

d d a d
81 = 5,0+ Ci(q) B e ) ot C,(q) J0’
it is impossible to construct a conrtol Lie bracket con-

e i
taining only the component in EP direction. Therefore
3

many existing nonholonomic control techniques can not
be extended to this second order nonholonomic system
directly. As to the hybrid control method which has
showed some promise for some systems [14,15], it
seems difficult to generalize it to this system. This can be
explained by investigating the drift term C;(q,v) in the
two-order nonholonomic constraint which is a motion
equation of the system. As expressed in the Appendix,
C3(q,v) can be further decomposed into
C3(q,v) = 631(11)1)% + Caz(q)ﬂ% +
Cu(g)vi + Cy(q) v v,. (8)
This equation shows that, for the lack of gravitationlike
term, after the transition ( v; 3 = 0), the drift term
C5(q,v) will approach zero exactly. This limits the use
of hybrid method. While, the special form of drift C5(q,
v) also inspires us that by producing cyclic motion of ¢;
and g, with suitable control u, and u, , after each cycle,
u1,,=0 and v; ; =0,the system does have a pure mo-
tion along the direction of v; which is generated by v?, 3

and v, v, and can be approximately expressed by
1 T

'U3< T) = 113(0) == C31J01}%dt + C32L)1)%dt +

T
C33J00102dl. (9)

Therefore, it is possible to control the unactuated joint 3
by moving the actuated joints in circle-like trajectories.

We study the problem below using an averaging
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method ¢!
Substitute C; with (8), we have the motion equation of
joint 3
7;3 = Cl(q)ul + C2((1)u2 + C3l(q)v% +
Cn(q)v3 + Cu(q)v3 + Culq)vim,
(10)
Similarly to [12], within one cycle +€ [0, T], for joint
i=1,2,we select the input as
@ _ {A,-cos41'ft/T,
"7 lAjeosdn(t - T/2)/T,

t € [0,7),
t€' [T/Z’T]’

(11)
such that

T
v,(T) - v,(0) = JO u;(e)dt =0, i = 1,2,

T(e
q(T) - ¢(0) = L)L)ui(r)drdt =0,
then we have

J:v%(t)dt = _[;(J;ui(f)dr)zdt N $A2
L)vazdt i JT(Jru1(r)dr)(£u2(r)dr)dt _

8n2A 1Ay, (12)

Average(10) , we obtain

LT, A7 (7
"fjo 'Ugdt =7J0 Cl(q)uldt 4 7J‘0 Cz(q)u2dt +

L(r 2 L fi )
7[0 Cgl(q)vldt + 7]0 C32(q)1)2dt +

1(7 1R
TJO C33(q)v§dt + _Tjo Cyu(q)vyvyde,

according to integral mean value theorems, by setting T°
small enough, we can obtain the averaged behavior of

v3, expressed by vy, as

oA _879621((1)141 + 8RZC32(‘1)AZ +

LS T? !
C33(Q)U% + ch(q)l‘hflz,

(13)
here g represents the average of ¢ over [0, T].
Suppose C3(q) 5 0, Cyp(q) = 0, let
2:/2m /‘ $(03,4°,¢4) |
Ai = Qa; Al v
T N Cx(q)
(14)

here

5(53’(_]3’4(3’) SEs kﬂ;a - k2(‘_]3 - (1{3[) .

633(‘})1_;'%’
1, SCy >0,
o= { = (15)
0, SC31 < 0.

1, a; =0and SCyy > 0,
= {o, a1 = 1 or SCy < 0.
It is found that when a; + a, = 1, sybstituting(15) , (14)
and (11) into (13), ¢3in the averaged system (13) will
converge to ¢% exponentially, implying we have con-
structed a control strategy in the average sense for the
shape phase. We may conclude:

Proposition 3.1  For system (5) in the shape
phase, with a; , a, defined as (15),if a; + a, %0, the
system (7) is controllable, and furthermore, the control
laws (11), (14), (15) ensure its exponential conver-
gence in the average sense, and meanwhile keep the fi-
nal values of ¢, g, unchanged.

Now let’ s consider the difference between the aver-
aged behavior of v3 (13) and it’ s original one (10).
From (11),(14),(15),it can be deduced that the con-
trol magnitude, A;, will approach zero when g; —> ¢4
and v3—>0, which have been guaranteed by Proposition
3.1. This implies the magnitude of u; and v; will ap-
proach zero as well. Then what is left in equation (10)
will be

= Cy(q)vi. (16)
If v3 = 0, the above equation means v; will change
monotonously, which is contradictory to v3 = 0. So 4
will approach zero, which means q; —> ¢q; —> ¢%.
This can be concluded as:

Proposition 3.2  For system (5)in the shape
phase, with @, «, defined as (15),if a; + a, =« 0, the
system (7)is controllable, and furthermore, the control
laws (11), (14), (15) ensure the convergence of ¢,
to g%, and meanwhile keep the final values of ¢, ¢,
unchanged.

Remark From (15) and (13),it is easy to find
that @; + a, 5= 0 gives a sufficient controllability condi-
tion.If it is satisfied ,then @ + a5 = 1, i.e., there is
only one joint being actuated at a time. Therefore «; de-
fines a control switcher between joint 1 and joint 2. After
a careful study of (14),we can even better define « ; in
(15) so that a suitable joint can be selected to produce a

smaller control amplitude. When the sufficient controlla-
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bility condition a; + a» 5= O is not satisfied, the system
can slide without any control till it reaches the region
where SC3; > Qor SCy > 0.
3.2 Orientation control phase

In the orientation control phase,i.e., phase 3, we
suppose joint 3 has moved to its desired angle. Without
considering joint 3, by setting v3 = 0 , the system can be

simplified as another reduced order form below

(I1 = V1, lI2 = V3,
= Si(@)v; + S2(q) vz, (17)
v = u, Y = U

This is similar to a fully actuated three-link freefloating
space robot. These models have been investigated exten-
sively in publications [3,4,9]. Tt is easy to consider v,
and v, as control variables for much more simplicity.
With the control vectors

a d d

p]za"‘S]aa’ p2—3q+52867
the cycle movement of v; and v, will generate a pure
move of @ in the direction of the control Lie bracket
28, a8,
[p]apZ:I = (aql "aqz)a@ (]8)

Here in this paper, for the reason of brevity, we propose

a controller for the system (17) without proof, which
can be done easily from (18).

Proposition 3.3 For the system (17) , suppose

as2 28,

H = -5 =0, 19
(q) dq,  9dqa - (1)

with ¢ > 0 small enough, the control law below

(l )
ul® = sgn( g(;)@ \/ ‘ 6—— sin —¢,
® _ (— 3-8{[>] [[=(6-8D] 1

| Wy = sgn H((]) A H() cos Et,
(20)

ensures the attractivity of 8¢ asymptotically, and mean-
while keeps ¢, g, unchanged in an average sense.

This proposition shows that suitable cycle moves of
joint 1 and joint 2 may produce a desired change of the
orientation of the robot. However, the move may also
generate undesired changes of the shape of the robot. It is
because the velocities of joint 1 and joint 2 will unavoid-
ably appear in (9) or (13), which trigger the move of
joint 3. For the control of joint 1 and joint 2 in the form
(20), from (12), (13),we can find that they generate

Vol. 16

movement of 5 in the scale of O(e?) . Compared with
the scale of movement O ( T2) of v generated by u'?,

the undesired shape deformation can be compensated by

Be) = 4@ 4 4 with T> .

(3¢)

the composite control u;

Conversely, the compensate control 2$? in w{*) will not

change the orientation of the robot. This is because the
control switcher of (15) will allow only u$? or uf? ac
tive at one time, that will never generate any movement
along the Lie bracket direction (18) . Therefore we may
have the following proposition which can be called ori-
entation without shape deformation.

Proposition 3.4 The composite control stralegy
wf = & +u®, i=1,2,
2 and »'* are defined by (11),(14),(15) and

(20) separately,with 7' > ¢, ensures the attractivity of

where u

6? for @ asymptotically in the orientation control phase,
and meanwhile keeps ¢, ¢, and ¢3 unchanged in an av-
erage sense.

Proof of this proposition can be implemented by us-
ing singular perturbation and averaging methods' ¢’ based
on the discussion above.

Remark we can even consider the composite law

el = ol e 2
to control the system, i. c., control the system in three
different time scales z, Tt and et. In fact, we use this
strategy in simulation to deal with the error accumulation
which may drive the system diverge from the desired po-
sition.
4 Simulation

In this section, we will mainly demonstrate the effi-
ciency of the velocity based control method proposed in
section 3. 1.The example of a space robot is a four-link
planar robot with the same dimension and mass parame-
ters as used in [ 5] . The control task is to move the unac-
tuated joint 3 from (¢5(0) = 1,¢3(0) = 0) to its de-
sired point (¢§ = 0,¢4 = 0), with the actuated joint 1
and joint 2 moving in cyclic path and returning back to
their initial position ( ¢, = — 7/4,q, = n /4) at the
completion of a task.A composite controller

ul?) = ugl) + um i =1,2

is 1mp]emented in the simulation study. Here rL“)

and
) are defined by (6) and (11) with parameters select-
ed as
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Euski = 2,35 koo ky = 1.5,2; ki, ky = 4

, L

From Fig.2 and Fig. 3, we can see that joint 3 con-

5
-1t J
§

5 P
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I'ig. 2 Position of joint 3 (unactuated)

Fig. 3 Angular velocity of joint 3 (unactuated)
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Fig. 5 Position of joint 2 (actuated)

verges well to its desired value, in both averaged system

and real system.Compare Fig.4 with Fig.5,it is easy to

show that our control switcher triggers joint | and joint 2

in turn. This verifies the results discussed in the remarks

of Proposition 3.2.
5 Discussion and Conclusion

We have proposed a strategy to implement

the

point-to-point motion control of an underactuated free-

floating robot. As an example, we have investigated

tensively the system with two joints actuated and

€X-

one

joint free. Because its specific structure of the system,

this system contains both the first-order and the second-

order nonholonomic constraints, and thus is difficult to

be stabilized by the existing nonholonomic control meth-

ods. Based on our analysis of the drift termn in the sys-

Control of Space Robots wiht Unactuated Joints 897

tem , a simple velocity-based method is designed to con-
trol the unactuated joint. Then a three step conrtol strate-
gy is constructed for the whole control task. The pro-
posed method can be extended easily to other types of
space tobots. The simulation study has verified the feasi-

bility of the proposed method.
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to tune. The digital simulation has proved that the new
unit has not only an agreeable tracking property but also

a good property of rejecting disturbance and chatter.
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