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Study on Stability of Nonlinear Closed-Loop Control Systems
Based on Generalized Frequency Response Function Matrices *

Fang Yangwang and Han Chongzhao
(Institute of System Engineering, Xi’ an Jiaotong University* Xi’ an, 710049, P. R. China)

Abstract; Based on the representation of generalized frequency response function matrices (GFRFM) , this paper proposes

a stability criterion for a class of nonlinear multi-input multi-output closed-loop control systems by the use of open-loop stability

of its subsystem, and this criterion is demonstrated by numerous simulation examples.
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1 Introduction

The nonlinear frequency analysis is an extension of
the classical linear frequency analysis method and its
most importance lies in the experimental verifiability.
There are many important results in the nonlinear system
simulation, nonlinear system identification, GFRF’ s com-
putational method and its applications in industrial control

systems[ 1-4]

. Recently, the stability of open-loop and
closed-loop for a class of nonlinear SISO contiol system
based on GFRF method have been discussed respectively
in paper [4] and [5],

the stability of the closed-loop system from the open-loop

but it is very difficult to deduce

subsystem for its complex series computation.

In this paper, based on GFRFM, the closed-loop
stability criterion for a class of nonlinear MIMO system
according to open-loop subsystem stability is presented.
In the second section, the nonlinear MIMO control sys-
tem is described; the stability criterion is given in the
third section; finally, a simulation example is offered to
illustrate the efficiency of the stability criterion.

2 Description of the nonlinear control
system
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The polynomial class of nonlinear multi-input multi-

output control system is considered as
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where D is the differential operator, M is the maximum
of differential order, and N is the maximum of multiple
degree, a's, b's, ¢'s are coefficient matrices, u € I 7,y
€ ™ are the input and output of the system respecti-
vely.

Assume “® " represents Kroneker product, and the
nonlinear control system (1) possesses the Volterra series

solution,i.e.

y(1) = 3 y. (1), (2)

n=1

yi(1) = j:;fll(r)u(t - 7)dz,
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yo(t) = JT@JT@Hz(Tl,Tz)(u(l ) @
u(t - T2))dT1dT2"',

ya(t) = [fm'..JTan(Tl""vrn) .

(@u(t — T,j))d‘[’l =y d‘[n,
where
H,E(le‘['z,”'yf",) 6 Ifﬁmxr", n = 1’2,-..

are the nth degree Volterra kernels or the generalized
pulse response function matrices. Furthermore, by using
the Fourier transform, the Volterra series can be repre-

sented as:

F(w) = 27.(w), O

&n(W) =Jw yn(t)e—jmldt = (27,[_)—(71—]) .

-] <] -
J J Hn(w-’wz—"'—wn,
- -

_wn)®

w2,"',w,,)11(w -y —

(@i () dwy -+ dw,,
where 5/ , 5/" , u are Fourier transforms of ¥,y,and u, ﬁ,,
is the multi-dimensional Fourier transform of H,,i.e.

i{n(wl ’

ey w,) =
J ‘”J Hn(fl, “-’ Tn)He_jw'Iidri’
s il i=1
H, is said to be degree-n generalized frequency response
function matrix,i.e. GFRFM.

Some notation ; consider that x(¢) : R — R" is time-

domain signal, x is the Fourier transform of x. Let

L;(— ©,®);: = {x”xup =
[Jf@2|x(t)|”dt]l/p < ool,
er“’(_ w’w): = {x:”wa; =

ess%‘g” x(t)||2< °°},
H:(_w’w): =
w130, =
o L, 1/p
[(2Tr)‘1J Z|xi(W)”’dw] < !,
_oai=]
Hnoo("‘ w,w): = {x: ||-;“ool =
3161§3||§(W)||2< ® |,

HY = {Flwy,wy,) € T | Fll o =
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sup (” F(w]’"'7wn) “2) < oo}’

where | < p <l °°'.I

Remark It is assumed that the following nonlin-
ear systems are the polynomial classes of MIMO nonlin-
ear systems without any special explanation.
3 Main result

Definition 3.1 The nonlinear control system
(1) is said to be locally L, stable,if u € Ly(- @, ®),
there exists L > O such that | « l, < L, then y €
L5(- », o).

Lemma 3.1

i, € H' (- o,@), ie.

S.ljl_pw H ﬁn(wrn'”9wn) “2 < ®,

Assume

‘Nll
and
uw € Hy N H,

yolw) = (2")_("_1)J J Gt
wn5w27“"'wn) X lAt(w -

wy — = w,) ® (.@éﬁ(w;))dwz < dw,,,
then
lyallas TEH Nl ol lall,.

Proof Since

15013 =@ 17w 134w =

@) (Galw) ) v,

hence

(Yolw),y,(w)) =

@m) %[ e[ (B = g = s
w2,"',wn)(ﬁ(w - Wy — wn) (0% ﬁ(wz) R
---®ﬁ(w,,)),1f1(w—1;)2—"- w 7
w,) @ u(wy) ® @

2(w,)))dw, ++ dw,dw, -+ dw,,,

wn’w2""’wn) °

e

Since

|<I:I,l(w - wy — "'wn,wz,'“,wn)‘

(a(w = wy = w,) @ (wy) @ @ ulw,)),
B.(w - wy — Wy s Wyt W,) *

w) @ w(wy) @ @ u(w,))) | <

"I:In(w - Wy — " — wn’w2"”’wn)"2 ‘

(ilaor= i ==

[aw - wy =+ = wa) |y uCwa) [, -+ JaCwn) |,
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[Ha(w = wy = = wo) [ alw = wy = -~ wo) |-
[aw) [, - fa(wa) ],
Then

(a(w),y.(w)) <

(2n)‘2("“”(j J 1B (0= wy— - —

w10, Nl ol 6 Cuwa) |, -+ s ()]l -

[ CaCw = wy =+ = w0,) | Fdwy -+ dw,) x
(J:J: [ B = g =+ = wywg,7,w, ], -
laCw) |, - 2w, dw, -+ dw, <

[ &30 03 2m) (D
J:...j:||a<w2)||2--- i(w,)], -

“lAt(w - Wy — = wn)ngdwz - dw,.

Furthermore
1713 = (2ﬂ)—1j_m
Va3 2l (2r)- (-0 .
T

s

[ A 1502 13D 213,

)A’n(w) ”%dw <

u(wp) |y - fulw,)], -

u(w — wy -+ — wn)Hgdw =

Hence
[7al, < VAN 02l 1l
Theorem 3.1 Suppose that nonlinear control sys-
tem (1) has Volterra series solutions (2) and (3),and if
its 1th order subsystem i. e. linear control subsystem is

asymptotically stable, and power series Z “ a, || w X" 1S

n=1

convergent . Then system (1) is locally L, stable.
Proof From Lemma 3.1 and Parseval Theorem,

we have
“y”z S (27I'>_1/2”)A’”2 < (271')_1/22 5’n 0 =<
n=1
u * y
— e
| K I
1
Fig. 1 Single-loop feedback system
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and when [z |, <r, we have Z V2| .l 2lt<+ o,

n=1
hence | | ,< + o, then the system (1) is locally L, sta-
ble.

For the convenience of discussing the local L, sta-
bility of closed-loop nonlinear control system, we will
modify Definition 3.1 as following;

Definition 3.2 Nonlinear system (1) is said to
be locally stable, if it satisfies

1) Its linear subsystem is asymptotically stable.

-]
2) Power series 2 | A, | ., «" is convergent.

n=1

Lemma 3.2 Assume nonlinear plant H, P are lo-
cal stable, then cascade system G = H* P is also locally
stable .

Proof This proof is similar to that in [9].

Lemma3.3 If F: = (I+ L) ! exists, and its
GFRFM is {F ,,}, where L is a nonlinear plant, I is
identity operator, then || i,,|| w<t+t®,n=1,2,",1+
L,()is non-singular matrix,and (I + L,(s)) is sta-
ble matrix, then | F, |, < + o ,n=2,3,.

Theorem 3.2 Consider nonlinear system shown
is Fig.1,it is assumed that its 1th degree Volterra sub-
system Fi: = (I + K;)~! of closed-loop system F is
asymptotically stable, and I + K;( ) in non-singular
matrix , where K, is 1th degree Volterra subsystem of sys-
tem K.If K is locally stable, then the closed-loop sys-
tem F is also locally stable.

Proof since / + K () is non-singular matrix,
hence F'(s) = (1 + K(s)) 'is regular,and F, = (I +
k,)~!is asymptotically stable linear system. The feed-
back system shown in Fig.1 can be redrawn as in Fig.2,
which is described by the operator equation

F=F-(I-(K-K))-F,

Fig. 2 Single-loop feedback system
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where Fy=(I+ K,)~".

Writing out the hemegeneous terms for F and (K
- K|) gives
Fi+ Fy+ Fy4+ =
Fi—Fro(Ki+Ky+) o (Fy + Fy Fy++°) =
Fi+ Qo (F + Fy+ Fy+ ),
where

Q== Fio(Kp+ Kyt

is a cascade Volterra system that contains no degree-0
and degree-1 terms. Since || 7| w<rmsand (K- K;)is
locally stable,by Lemma 3.2, @ is locally stable,i.e.

=
Z gx",x > 01is convergent, ry is its radius of conver-

n=1

- T

H
Fig. 3 Closed-loop feedback system

Proof The noniinear system shown in Fig.3 can be
redrawn as in Fig.4.Let L be the feedback nonlinear sub-
system from input v to output y.Applying Theorem 3.2,
we know that L is locally stable. Since the closed-loop
nonlinear system from input u to output y is cascade
system of G and L ,by Lemma 3.2, the nonlinear system
shown in Fig.3 is, thus,locally stable.

Corollary 3.1 Suppose G is locally stable non-
linear system, H:y = f(u) is a nonlinear memoryless
system which satisfies f(0) = 0, and y = f(u) is ana-
lytic, where u € 2™, y € " are input and output vectors
of the system respectively.If 7 + G,( % )f (0) is non-
singular matrix,and (I + G(s)f (0)) ! is asymptoti-
cally stable, then the feedback system shown in Fig.3 is
locally stable.

4 Simulation examples
Example Suppose the pure input nonlinear sys-

tem

!
&

G-{yi’-’-zy; + 2y - uy i
¥4 + 395 + 2y, — uy — ub = 0,
the pure output nonlinear system
{y{ +2y1 + 0.1y — uy = 0,
y5 + y2 + 0.2y — u, = 0,

by using the criterion in [2], G, H are both locally sta-
ble. Since the GFRFM of G, H are
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gence,where ¢,: = | .| .. According to Lemma 3.3,
y.a e ” Fnl| o EXIStS,

We will prove that Z Jnx" is convergent. The fol-

n=1

lowing proof is similar to that in [6].

Theorem 3.3 Suppose that the nonlinear system
shown in Fig.3 satisfies:

1) G,H are locally stable nonlinear subsystem re-
spectively .

2) I + G,(®)H,(®) is non-singular matrix, and
Fi: = (1 + G H,)™" is asymptotically stable. Then the
feedback nonlinear system is locally stable.

Fig. 4 Closed-loop feedback system

< i
2 - w4+ 2w

G](w)

0

=
S
I

and

(1 + C[(S)ﬁl(.s))_l =

53 4 457 4 6s + 4

o : 0
ST+ 45" 68 + 3

0 $ +4s2 + 55 +2

P L4s®+ 5543
is asymptotically stable; by Theorem 3.3, the closed-loop
system shown in Fig.3 is locally stable. The response di-
agrams of the system are shown in Fig.5.
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Fig. 5 Time response diagram

5 Conclusion
The locally stability criteria for the polynomial class

of MIMO nonlinear closed-loop control systems based
GFRFM’ s are similar to those of linear closed-loop con-
trol system. Due to not considering the problem of
GFRFM’ s power series convergence of nonlinear closed-

loop, the criteria is very simple and practical .
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