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Abstract; In this paper, we present an algorithm to identify state space models based on the data obtained from closed

loop systems. It works well on both stable and unstable system

ically.

with serious noises and large delays and also is proved mathemat-
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1 Introduction
The numerical algorithm for subspace state space
system identification, N4SID'Y, is always convergent
and numerically stable since they only make use of QR
and Singular Value Decompositions. It derives the state
space model directly from the input and output data in a
very simple waym. One of the main assumptions of
N4SID is that the process and measurement noises w are
independent of the plant input «. This assumption is re-
pudiated when the system is working in closed loop writ-
ten into the general feedback system T(P,C)in Fig.1.
Using the equivalent open loop identification frame-
work®) to cope with this problem, we make NASID
work into closed-loop identification.
2  Equivalent open loop identification
framework
In the algebraic theory of linear finite dimensional
time in variant systems a plant P can be factorized as
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ND-!. In this we will use the following lemma, where
RH.,, denotes the set of all rational stable transfer func-

tions.

Lemma 2.131  Let P, be an auxiliary model and

'C a controller such that T( Py, C) € RH,, and let (No,

Dy) and (N,, D,) be a rcf (right coprime factorization )
of respectively Py and C. Then P = ND™! satisfies
T(P,C) € RH,, if and only if 3 R € RH., with
N = Ny + DR, (D)
D = Dy - N.R. (2)

Fig. 1 Feedback system

The stable feedback system in Fig. 1 can be recast into
Fig.2 with the equivalent open loop identification frame-

work(®) . where x is intermediate.
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Theorem 2.1  Let a plant P and a known
compensator C make a stable 7'( P, C) as in Fig. 1. Then

Fig. 2 The open loop identification framework

the intermediate x appearing in between Dg' and N, in
Fig.2 can be reconstructed via
x = (Do + CNo)™'(u + Cy), (3)
which is independent of w, the closed-loop identification
of P can then be conducted through the open loop identi-
fication of N and D
u = Dy - NSw, (4)
y = Nx + D,Sw, (5)
provided that r; and r, are statistically independent of w.
3 Identification algorithm and implemen-
tation
In Equations (4) and (5), we ignore the distur-
bance, D and N can be approximately rewritten as
z2p(k + 1) = Apzp(k) + By (k), (6)
u(k) = Cpzp(k) + Dpx(k), (7)
and
an(k +1) = Ayzy(k) + By (k), (8)
9’(“ = Cpan(k) + Dy (k), 9
where [Ap, By, Cp,Dp) and [ Ay, By, Cy, Dy ] are the
state space representations of D and N . Then we put 1
and y together and make them into one system and give
the definitions of ¥ and the new state space equation as

Y =~ (y)’ (10)
2(k +1) = Az(k) + Bx(k), (11)
Y(k) = Cz(k) + Dx(k). (12)

Because the contributions of ¢ to x on the two paths
N,,Dg'and D,, C, Dg' are equal and the directions are
opposite in Fig.2, the intenmediate x and the disturbance
w are uncorrelated

E(x,uw') =0, (13)

Since Equation (13) satisfies the N4SID condition,
we can identify [4, B, C, D] with N4SID. Then parti-
tion Equations (11) and (12) into [ 4y, By, Cp, Dp ]

Vol. 16
and [ Ay, By, Cy, Dy] as follows
il |2
[E_|§J =%, _[_’_’_P - (14)
Cy 1Dy
where
A= Ap = Ay, (15)
Bl =B}, 15 (16)
then

[Ap.Bp,Cp,Dp]) = [A,B,Cp,Dp],  (17)
[Av,By,Cy,Dy] = [A,B,Cy,Dy].  (18)

After eliminating the stable uncontrollable and/or
unobservable states, we get a lower order controllable

and observable state space representation of the plant P
= ND™! as follows

A, = A - BD3'Cp, (19)
B, = BD}', (20)
C, = Cy - DyD3'Cp, (21)
D, = DyDj'. (22)

The proofs are ignored because of limited space.

All the plants we take into account are minimal sys-
tems, so we can always find a stable controller €. This
is allowed to choose the auxiliary plant Py to be O and
the rcf as ( Ny, Dy) = (0,1) first. Then it is possible to
letr, = 0 and x = r. For the identification of P we
only need controller C and measurements of » and ¥, or
reference r(, input u and output y.
4 Simulation

To a given unstable system in Equation (23), we
can design a stable controller stabilized closed-loop sys-
tem. Since the disturbance noise is a random signal and
has undetermined properties, we identify the plant state
space model 3 times under 3 different random distur-
bance noises conditions. On the other hand, the signal
noise ratio SNR ~ 10 dB or 20 dB is used in simula-

tion.

B

Ap- unstuble

p-unstable

v
Cp«unsull)]e ’ Dp—unslable

4.0000 - 0.5000 | 5.0000"
5.0000 05000 | 5.0000.
5.5000 - 0.3500 | 6.5000

(23)
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the original and the two identificd plant models
for the unstable system
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Fig. 3 The original and the 3 identified plant models
for the unstable system

Fig.3 shows three 2nd order models identified by
the new algorithm with different disturbances, together
with the real .unstable plant model. Under very serious
noise disturbance conditions, all the identified models
are almost identical to the real one. Due to limited
space, the too complicated application of a practical
glass tube manufacturing process is ignored.

5 Conclusion
The algorithm developed in this paper is able to de-

rive the fairly accurate state space representation of a

plant model from closed-loop data in a fast, efficient,
reliable way. And it works well on systems with signi-
ficant noise disturbances and serious delays, as well as

on unstable plant models.
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