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Identificaﬁion of Parsimonious Model Structure

ZHANG Zhiyong
(Institute of Automation, Fuzhou University «Fuzhou, 350002, PRC)

Abstract; The projectfon technique is used to identify a parsimonious model structure of canonical
vector difference equations for an actual system. The structure consists of obscrvability indices,
autoregression orders and a parsimonious structure of parameters to be estimated. A new procedure
with a whitcning projoction operator, is proposed to estimate observability indices as well as
autoregression orders in the case of coloured equation errors, which can be modelled with AR.
Motreover, an algorithm is presented to determine the parsimonious parameter structure, each element
of which has a significant contribution to jmprove the quality of the model.
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1 Introduction

Among the various existing methods of structural identification ,the procedures based on the
range error test or the residual error test are still widely used since they are simpie, direct and
easily understood. But a limitation of these methods is that they give satisfactory results only if
the equation error is a white-noise process or if it has known statistics. Moreover, though several
approaches to ‘determine a model set with the smallest possible number of parameters to be
estimated can be found in the literature, they can be used only after the computation of parameter
values.

In section 3, a new procedure will be proposed to determine the structure indices of ARARX
model sets, directly based on the input and output data. In section 4, the determination of so-
called parsimonious parameter structure will be delt with. The proposed approach can be used
prior to parameter estimation.

2 Formulation of the Problem

Consider the following multivariable discrete-time model described by the canonical vector

difference equations (VDE)

¥ = A(gDYW® + B@Hu@) = 2 4%y¢ — k) + D BPut — B, (1)
k=1 k=1

Where y(+) € R*,u(+) € R, ¢! is the backward shift operator, i.e. ¢y =y(— 1. If the
Observability indices are arranged in increasing order, vy<S ;< ++<{va, Without any loss of
8enerality, the coefficient matrices A® (k=1, -, m) are all lower triangular matrices, and the

n . . . .
Umber of non-zero i-th rows in A® (k=1, «-, m) is precisely equal to the observability index
\‘“_———_‘——._
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v, [,

In the noisy case, VDE (1) can be rewritten in the form
%@ = Al D@ + Bi(g™Dut) + ax(t), i= 1,e0-,m,

(2

in which
0

A = [( i a.xhq""-') yoee ,( 2 ai(i-1)lqb—") ’

k=y—] k=y,—1

¢ 0

[ o) sl 33 omit) ], o

b=v‘—-1 b=v,—l
0 0 )
Bi(¢™?) = [( 2 bm!f_"') yoer ,( 2 bwkq)‘—") ] ’ (4
l=v‘.—-1 k=v‘.-—1
o (t) = [ 1 - D.-(q“)]w,-(t) + a(t), (5)
Di(g™) =1 — dyg! — o — Dy, a7,
In (5), ¢(t) is a white noise. From (2) and (5), a prediction model set can be constructed jy,

the folloing form

5@ = 4@ Dy® + Bilg D@ + [1 — Di(g=) Jax(), (6)
& (@) = 5:(8) — [Alg™Dy® + Bilg™Du®)]. ¢p)

The tapic of this paper is to choose a feasible model structure (3;, 4z, 6y i=1, +, m) of
model sets (6) and (7) for an actual system by using input and output data without the explicit
estimation of pafameters. Here #; and #, are, respectively, the observabih"ty index and
autoregression order of the i-th submodel. 1, is a set which consists of those nonzero parameters
in A4 (+) and B;(+) that have to be estimated. The triple (#;, fg, 6,) is the parsimonious
structurefz] of i-th submodel sets (6) and (7) for an actual system in the least square sense.
-3 Determination of the Structure Indices
Using output and mput data, the following equatlons can be written

yit) = 2 Za‘,}y,<t+k~v>+ Z Z}bﬁu @+ k=9 + w0, ®

=1 k—v—l =1 k"'v -1

W) = 3wt — s) + e1), 9
X a=]
where
it +B) = [g;,¢t + B, ;¢ + £+ N — DT,
w0+ B = [u;(t + k), yuyt + k+ N — DT,
wi(t) = [0,(),++, (¢t + N — DT
Let

H, =[:}'1(t - 1))'" ,y...(t - 1)»“10 — 1)"")ur(t—“ 1)7
yl(t — 2)"")3’;0 - 2) yux(t - 2)!"' ’ur(t _ 2)9

V1= ) s oee v — ) 0y (E = ) yoee 1, (¢ — %) ],
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wbi"h #; is the test observability index.
projecting y:(t) onto the null space of the space S,=spanc(H.) , it can be shown that there
. residual vector r, such that r,=M,y;(¢) where M,=(I— H.H}) and Hi is a pseudoniverse

o’
, 4 i M, is the complement projection operator of S,.

f 2
! 1f the test observability index =; is not larger than the real one 7, i. e. n;<_ ¥, the space S,=

(H,} associated with ¥ can be decomposed as a direct sum of §, and its complement S, in
8,=8,P75.. And relation M,=M,~+P,, holds, in which P,_,isa projection operator

§ .
g That 18
v —

S,. Using this relation and the orthogonality of projection operators, the following

= Of p ubspace
' pe shown

""-"z = llr.llz + ”Pv—-yi(t) ”2’ (n << w).
The second term on the righthand side will be decreasing to zero with (v;— n;) decreasing to
[3:43,
If ni2v, it follows that M.y (t) = Maw;(f) since
spane{H,} < spanc{H.}.
ations (9) and (8), the following can be obtained

7680

Using equ :
re = A(n) + e (), (m =) ao
and then
Iz = 4@ |2 + lle®li?, (=),
where
i . »m 0
4(n) = E@M.{ya(t —§) — [E Z aipyi(t — s+ k — »)
=1 j=1 k=y—1 .
r [1]
+ 2 Ebiﬁu;‘<t'—s+k'—' Vs)]}"r‘ e(t), (mz=v). an
J=1k=y—1

In the special case of d,=0(Y s), the algorithms proposed in [3,4] are efficient in determining
the observability indices since the argument ||4(n;)||* equals zero. In general cases, however,
470, and ||4(n) || will be a function of the test observability index =, From équation an, it
can be seen clearly that the projection operator M, will nullify more and more vectors of y;(+)
and u;(+) in (11) with the increase of n; because the spang (H,) becomes larger and larger.
When »; grows to be equal to (¥-+ny) or more, the spang { H,) will incorporate all of the vectors
¥i(+) and 14;(+), and then M, will annihilate all of them, and l4(n)||? will become zero.
From the above analysis, a conclusion can be drawn as follows

[Py NI2 4 146D + a1, <l

||A(v,-)||2 + |le:(® 12, n; = Vi
Vin) = _ a2
W = VSOOI — 1Pritor D + Tl 5 < 1< e+ 7y )
fle: (@2 ~ 0?2 (N — Lo), v+t

Remarks
- The argument V (n;) is constructed in the form V(m) =|r.|2
- In equation (12), relation llr..|[2=]I./j(v.-)llz-}-||e,-(t)||2 is used.
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- Pa—, is a projection operator of §,, which is subject to the relation of the decon,
8, = spafie{H,},
8, =8dS5, n< n,\< % + g

- In equation (12), N is the dimension of data vectors, and Ly is the number of v,

p()sition ’

ecto
¥;(+) and u;(+), in equation (8) with the test observability index n,. IS,

- If the argument V (n)) is plotted versus »;, its typical ’

shape is similar to the dashed lines in Fig. 1. From
V() /(N= Ly
this plot, (%+n4) is obtained as the smallest integer -

#; for which the part of the residual plot for n.}( v+ V) W=y,
o, -,
n,.) is almost flat.

In order to determine the observability index v, an

additional whitening projection operator will be adapted(s:6], | I ; T Py
Assume that the residual error r, in the case of n =¥, can be
modelled with AR, i.e. T
: e Fig. 1 Determination of » ang .
n= Yant— 9 +e®, n>w, ay
where -

r(t—8) = [r.(t — ) ,r(t — s 4 1),000,r(t — s + N — DI
Construct a matrix M,, a complement projection aperator of the null space of
span{r,(t — s),s = 1,2,+,n, and n, = ng).
Multiplying equation (13) by the operator M, from the left, it follows that
M, = (), = and n, = n,,
and .
(Mrall? = lleDl?, 7> v and 2, > n,.
This means that the residual error 1, is whitened by the operator M, in the case of ”»’2.”"'- But for

1<%, the other relations can be derived from equations (11) and (12)

1Ml = IMLPyi®) + Dem(t — )2 + Jlen)]
ca==]

If V. (n) denotes the squared length of the so-called whitening residual error (M, r,), i. e
Vem) =M, r,[|>= 1M, M, :(¢)||?, an expression can be summed up as follows
*r0
V() = IM.[P, () + ;Caﬂ(t — ]2+ le@®z, =<, 14

leOI ~ 022N — L — u), n > |
Remarks

- An example of the plot V,(%;) is shown with the solid lines in Fig. 1. From these plots, it
can be seen that the argument V,(n;) reduces rapidly with the increase of n; when n,<C» and it
almost keeps the same value when #,>>%. Thus the smallest value of #; in the almost flat part of

the solid line plot can be taken as the estimate of the the i-th observability index. Consequentlys
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§ fu €20 be determined from the plots V(%) and V,(n;).
o oan
#t _1n expression (14), L is the number of vectors y;( ) and u;(+) in equation (8) with the

tobservablhty index n;, and n, is the dimension of span{r,(¢—s), s=1, +=, n, and 7,>
,: 168

)
M Determmatxon of a Parsimonious Parameter Structure

In some cases a parameter struture #; in model (6), associated with the estimated index s
ay b€ extravagant since the values of some elements of &,, i.e. some coefficients in A,(+) and
ma

B
ith the index 9;, in equation (8) have small or even no contribution to the reduction of the

HV’ wi

squared length of the residual error vector.

Denote with {A;,+*+,h} all column vectors of H, and with (h,], «e+,h, } all vectors which

are near or even equal to zero, This means that some column vectors in the data matrix

pave @ significant contribution to the reduction of the squared sum of resigual errors. A
parametef structure, corresponding to {h, NETTINY N }, is called as a parsimoni_ous parameter
structure of model (6), and it will be de1oted with &y,

A procedure to select {h,, »'yh,}, from H, is proposed as follows.

1) Let k=1, M®=], y.‘°’=ys(t), B =h;, (j=1, =, L).
Set an integer set 8= {8;=0|j=1,+,L}. Assign s, to be a large enough value.

2) Compute
[Ag=D) (a0
[h}"“)]T[h}""l)] !

y(x) —_ p}(k)y§k—l) ,

o = DPTDPD,

P,(k)""" Jj=1,+,Land ]# 819 %% 9 Sk—js

where
P§® is a projection operator associated with A{~;
y{ is a projection of y{*~» onto A~V
ef? is the potential contribution of Af~? to the reduction of the squared length of Ll
3) Select the direction asssociated with the maximum contribution as the optimum projectiofx
direction. Define
Ca(:) = max{cxﬁ"),j = yeer Ly § 7 S1pe DSk—l} s
with setting its corresponding j into the unit s, of the integer set . Denote with hﬁf) and Pﬁ:‘) the
vector and its projection operator associated with ¢ 4 ,
4) Compute
M® = pfe-1) — p;:)’
y,f") = M(k)y'gk—l)’
Where
M® js a complement projection operator of span {h, (1), ,k, (k) };¥® is a residual
vector of y;(4).

5) Compute the whitening residual error. Construct
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r(— k) = [0909"'909?/9)(1)"”,Z/Sb)(N — k,_)]'[‘

ad
V= [r(— D,r(—=2),:,r(— =) ]
‘ompute
M, = I — ¢@w)-r,>
e® = My®,
VO = [T[ew],
where
M, is a whitening projection operator with the order n,; e® is a whitening residual error
vector,

6) Compute

VYO —y®» N — L — g,
F(k) = —gr— « == .

It F()<<F,(L—¥%,N—L—n,), then I=Fk. The vector set (h,x, *e+y h,} and its corresponding
parsimonious parameter structure &y; can be determined. Otherwise, proceed:

7) Set |

AP = M®RE-D . for j == 1, ,L; j 7 819y

Let k=% 1 and go to step 2.

About the above algorithm, the following aspects are noteworthy.

- After I stages of the above,the procedure h,(ll) JRTIIR h,(f) are orthogonal derections.

- Step 5 does the residual error whitening. It is the key to make the follwing relation hold

YO —y® N —L —q
PO =——o— —5 3

under the hypotheses; 8y is empty. 8y is the complement set of &y in ;.

*~F,(L—U4N—L~—mn)

- In step 5, the order of a whitening filter is assigned a priorily. But, in fact, an alternative
can be easily made up as follows.

Set a subloop;

Project r (0) onto r (— 1), r(—2), - one by one until the ¥® has no significant
change. )
5 Conclusion

A parsimonious structure identification scheme has been presented. Although this scheme.is
applicable for the ARARX, it can have its merits in the case in which output data are corrupted.
Moreover, the proposed algorithm in section 4 seems suitable to be used independently to identify

the parsimonious structure of a model set.
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