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Abstract; For the output feedback design of discrete-time linear system, we consider the integral
controller using prediction type reduced-order observer. A state space répresemation of the doubly co-
prime factorization is obta.med, and then a converient paramettization of all stabilizing controllers is

given by use of YIB parametrization method. In this parmetrization, the requirements on the steady
state characteristics and the computation delay can be expressed by simple consttaint on the free param-
eter. Redefining free parameter, we can obtain a modified parametrization where the free parameter
can be an arbitrary proper and stable rational matrix.
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1 Introduction

In the control system design, effectiveness of integral controllers has been established. Since
computers are applied, it is important to develop design methods for discrete-time integral con-
trollers. An issue inherent in digital control is time delay due to computation time of control law.
For example, when the time constant of the plant is short and the dynamic order of the plant be-
comes high, the time delay due to computation time of the computer cannot be neglected.

Mitalll has proposed novel state feedback designs of dlscrete—tlme integral controllers with
computation delay. All the state feedback matrices of the integral controllers are determined by
use of the feedback gain matrix of the optimal regulator problem for the original plant. Guo et al
have proposed a design?! based on a prediction type Kalman filter which retaining the advantage
of Mita’s design. However, he obtained controllers are higher order controllers.

Recently, YJB parametrization (3] of all stabilizing controllers using proper and stable ratio-
nal matrices has been widely used in control system design[#%], To obtain the parametrization, we _

must find matrices satisfying a doubly coprime factorization. The state space representation found
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py Natt et all®] has been widely used for this purpose. This representation is derived based on a

regulator using a full order observer. For the case of using a reduced-order observer, Hippel”] has
obtained a continuous-time modified doubly coprime factorization based on a regulator. Further-
more, Ishihara et all®) have developed Hippe’s result to discrete-time case which is useful to di-
~ crete-time low-order controllers design. '

For the output feedback design>of discrete-time linear system, to reduce the order and guar-
antee the steady state characteristics and the computation delay, we consider the integral con-
troller using prediction type ;educed—order observer. Based on the controller, we can obtain a im-
ple parametrization of all stabilizing integral controllers with computation delay. The free param-
eter in the parametrization can be u§ed to enhance the basic integral controller by H; or H., opti-
mization techniques. ’

2 Discrete-Time Low—Order Integral Controller with Computatnon Delay
Consider a dlscrete—txme linear system described by
@+ 1) = A=) +Bu(®, 3@ = Cz(@D), 2.0
where z(t) ER*, u(¢) ER™ and y() €ER™ The following assumptions are made.

i) (4,B) is controllable and (C,A) is observable.

ii) The matrix OB is nonsingular. i

We shall consider a design of integral controllers wich achieves asymptotic tracking to the
step reference input signal under one step computation delay. To guarantee such a design, we as-
sume that the matrix

g= 171 Bl | » (2.2)
Le ol
is nonsingular which is equivalent to that the system has no zeros at z=1.
2.1 The State Feedback Design[1:2]

Fig. 1 Structure of the integral controller with computation
delay using the state feedback
Consider the integral controller shown in Fig. 1. Let F be an arbitrary matrix such that the

matrix A— BF is asymptotically stable. Determine the matrices 7, H; and D; so as to satisfy
[Hy+mT0¢C T,)E = [Fa? I+FB+FAB], Dy=1+ FB. 2.3
Then the closed-loop system is internally stable and the transfer function matrix from r () to y(t)
s given by
Ci(2) = z7C(21 — A+ BF)™'B[C(I — A+ BF)™'B]™L 2.4
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2.2 The Output Feedback Design
We replace the state required in the state feedback design by an estimate given by the filter-
ing type reduced-order observer ' :
2(t/t) = Mz(®) + Ny(@®, (2. 52)
; 2t + 1) = Kz@) + Hy(@®) + TBu(®), (2. 5b)
where z(t) €ER* and a—m<k<n (see Fig. 2). We choose the matrices M, N, K, H and T such

that

TA—KT=HC,MT+NC=I,K=TAM, (2. 6a)

rel _ [0
LTJ[N M] = |_0 I_J. (2. 6b)

Then %(¢/t) €R* is a state estimate of the system (2. 1).

[

Fig. 2 Structure of the integral controller with computation

_ delay using a filtering type reduced-order observer
For the design of discrete-time low-order integral controller with one step computation de-

lay, we propose to use prediction type reduced-order observer. Combining (2. 5) and the state

predictor 2@+ 1/t) = A2(@/D) + Bu(t), @.7
we can consfruct a prediction type reduced-order observer as , ;
2@+ 1/t) = AMz(®) + ANy () + Bu(®), (2. 82)
2(t + 1) = Kz(¢) + Hy(@® + TBu(®). (2. 8b)
The structure of the servosystem is shown.in Fig. 3. '
() sC0) w(® C(d—M)7B o

Ty I

T

Prediction Type
Reduced-Order Observer fum—g

Hy 27
3(t/t—1)

Fig.3 Structure of the integral controller with computation

delay using a prediction type reduced-order observer
_The integral controller shown in Fig. 2 can be designed by the state feedback design and the
filtering type reduced-order observer (2. 5). This controller can be realized by using the predic-
tion type reducgd—order observer as shown in Fig. 3 where the matrices Hy and Ty are determined

by
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[Hy TulE=[FA I+ FB]. 2. 9)
Because we can easily show that
Ty=1Ty, H,= HyA, D,= HuyB.. (2.10)
For the structure shown in Fig. 3, we have
s@+ 1) =5+ 1) — Ha@+ 1/t), 2.1
s+ 1) =s(t) 4+ Tulr@® — y@®]. (2.12)

2.3 The Controller Transfer Function Matrix
We define the matrices Jy and Ly by the relation
G _ T 4N 7
L ™ 1+ canl?
which is clearly dual to (2. 9). The solutions of the matrix equations (2. 9) and (2. 13)are

(2.13)

Hy=TF + [CU — A+ BF)~'B]-10(I — A + BF)!, (2. 14a)
Tw = [CU — 4+ BF)~1B]™, (2. 14b)
Ju= AN + (I — A+ ANC)-'B[C(I — A + ANC)—B]-, (2. 15a)
Ly = [C( — A + ANC)-'B]-L (2. 15b)

Result 2.1 Consider the integral controller shown in Fig. 3. The controlier transfer func-
tion matrix from y(¢) to —u(¢) can be expressed in left factorization form as
Cu(2) ={I 4+ z'Hu[AM (zI — K)~'T 4 I]B)}~!
« {(z — D Ty+z "HyA[M (2l — K)™'H + N]) (2. 16a)
and in right factorization form as
Cu(z) = [(z— 1)Ly + F(zl — A + BF)‘lJM][I + C(zl — A4 BF) 'y |7
(2. 16b)
Outline of proof The expression (2.16a) can easily obtained from (2. 1), (2. 8),
(2.11) and (2. 12). It is easily verified that .
-H = TAN, (2. 17a)

A[M(zI — K)™'H + N] = [AM (21 — K)~'T + I]JAN, (2.170)
AM (2l — K)Y T 4+ I = 2(z2l — A + ANC)™! (2.17¢)

from (2. 6). Using the above relations and the expressions (2. 14) and (2. 15), we can derive
the expression (2. 16b) from (2. 16a).
3 Parametrization of Integral Controilers
First, we can obtain the following doubly coprime factorization by using the expressions .
(2.16).
Result 3 1 Let G(z) be the plant transfer function matrix. The G(2) and Cy(z) can be
€xpressed by coprime factorizations using proper and stable rational function matrices as
G(z) =C(zl — A)™'B= ND"! = DN, (3. 1a)
Cu(2) = NcDi! = Dg'N,. (3. 1b)
Where
N = C(zl — A+ BF)™'B[C(I — A+ BF)~'B]-1, (3. 2a)



84 CONTROL THEORY AND APPLICATIONS Vol. 10

D =[I— FGI — A+ BP)B][cU — A+ BRI, (3. 2b)
D = [0 — A+ ANC)™'B]'C[zl — A — AM (2l — K))™'TA]N, (3. 2¢)
¥ = z1[CU — A+ ANC)™'B]'C[AM (d — K)™'T + I1B, (3. 2d)

No= z=1[I + (z— 1)F(zI — A+ BF)~\(I + ANOY(I — A+ ANC)™'B], (3. 3a)
Do = zYz— 1)[CU — A+ ANC)™'B

+ 0l — A+ BF)~1(I + ANC)(I — A+ ANC)™'B], (3. 3b)
Do = z-1(z — 1){CU — A+ BF)™'B -
4 20 — A + BF)~X(I + BF)[AM (I — K)™\T + 1B}, (3. 3¢)

Np=zYI+2z1(z— 1DCU — A+ BFY7'U + BF)A[M(2l — K)7'H + N1}.
' (3. 3d)
In addition, there exist the following relation of doubly copfime factorization.
(e N [P —Ng_ [T 0]
T = . 3.4
% sllv 2 )7 b 11"
Outline of proof The expressions (3. 1a) and (3. 2) are easily proved[?:5l, The expressions
(3. 1b) and (3. 3) can be obtained from (2.18). The relation (3. 4) is decomposed into

DeD + NN =1, (3. 4a)
ND = DN, (3. 4v)
DcNe = NeDe,s : (3. 4¢)
NN, + DD, = 1. (3. 4d)

1t is clear from (8. 1) that identities (3. 4b) and (3. 4c) hold. The identity (3. 4d) is dual to the
identity (3. 4a) completely. Using the expressions (3. 3¢), (3.2b), (3.3d), (3. 2a),
(2. 16b) and (2. 17) and the following relation
ANC — BF = (sl — A+ ANC) — (l — A+ BF), (3.5)
we can directly prove that the identity (3. 4a) hold.
From the YJB parametrization, the above result can be used to parametrize all the stabilizing
controllers as
| ¢(2) =(Dc — QM) (N; + ¢D) (3. 62)
=(Nc¢+ DQ)(Dc — N, - (3.60b)
where free parameter @ is proper and stable rational matrix. For the controller described by
(3. 6), the sensitivity matrix at the input of the plant can be expressed as
2(z) = D(D. — @N). 3.7
The following result provides a simple parametrization of the stabilizing integral controllers
with computation delay. |
Result 3.2 In the parametrization (3. 6), define a class of the free parameter as '
Q=z%z— D& (3.8)
where (), is arbitrary proper and stable rational matrix. Then the corresponding controllers ensure
the integral action and admit one step computation delay. ~

Proof Note that the integral action is guaranteed if and only if the sensitivity matrix
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(3. 7) satisfies ¥(1)=0. It follows from (3. 3¢c) that D,(1)=0. Since we have assumed that

the plant has no zero at z=1, the matrix N defined (3. 2d) has no zero at z=1. It is possible

put not aiways that D(1)=0. If the free parameter @ satisfies Q(1) =0, the sensitivity matrix
(3. 7) always satisfies X' (1)=0. To admit one step computation delay, C'(z) should be strictly
proper s i e., 0(00)A= 0. It can be verified that C(c0) =D(o0)Q(c0) D51 (o). It follows eas-
ily from (3. 2b) and (3. 3b) that D(co) and Dz!(co) are nonsingular. Consequently, ¢(co) =
0 is equivalent to @(co) =0. These réquirements for @ are clearly satisfied if @ is expressible as
in (3. 8).

The above result shows that the requirements on the steady state characteristics and the com-
putaﬁon delay can be expressed by simple constraints on the free parameter in the parametriza-

tion.
4 An Example
We consider the following case
0 1 0 0
A= (0 0 1|, B=|[0]|, ¢=[0 1 0] - 4.1)
1 2 3 . 1

for the system described by (2. 1). For the prediction type reduced-order observer described by
(2. 8), we can choose the matrices M, N, K, Hand T as

10 0
re oy __ 13 ,_T100]
o C R A R A R A
4.2)

which satisfy the relation (2. 6). Choosing the state feedback gain matrix F for the regulator
problem as F=[1 2 3], we can obtain that , .
N=N=1/22, D=D= (28— 32 — 22 — 1)/, | (4.3)
No = N¢ = (5528 — 2022 — 19z — 15)/z*y Do = Do = (z* + 32 + 11z — 15) /2%

* (4. 4)
which satisfy the expression (3. 1) and the relat:on (3. 4) Using the parametrization (3. 6) and
the constraint condition (3. 8) on the free parameter @, we obtain all the stabilizing controllers
as :

2(552 — 2022 — 19z — 15) + u(# — 42+ 2 + z + 1)
2[2(2 + 32 + 11z — 15) — (z — Da1] '

which can ensure the integral action and admit one step computation delay , where g, is proper and

C(z) =

(4.5

stable rational polynomial.
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