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Optimization of the Supervisor
for a Given Discrete Event System

JIANG Zhlpmg and WU Zhiming
(Department of Automatic Control, Shanghai Jiao Tong University «Shanghai, 200030, PRC)

Abstract: Based on the supervisor model proposed by Ramadge and Wonham, a new optimization
design idea is introduced which makes the number of states of a supervisor comparatively minimum. A
P-algorithm with full proof is suggested. Three examples are given.
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1 Introduction- ,
A discrete-event system, according to the model established by Ramadge and Wonhaml[!],
"can be expressed using a so-called generator G=(Q,Z,0,q0,Qn) , Where Q is a state set, X an al-
phabet, 0:X X Q—@Q a partial function (pfn), go an initial state and Q,=Q a ‘marker state set. G
is generally supposed to be deterministic: i) g, is unique and ii) for all cEX, q€Q, ‘d (o,9)=¢
EQ is unique or 6(a,q) is undefmed
. Let Z.&¥ and Z,C ¥ represent the controllable and unoontrollable alphabet set in X respec-
tively with Z,|J Z,=2 and Z.N Z,=(J. Introducing a control mechnism I’ into G, we obtain a
‘:‘g‘pntrolled discrete event system (CDES) @,= (Q,I"X Z2,8,,905@n)» Where, @, X, qoand Q, are
as defined before; I'= (y:y;E’—*{O, 1} and (Vrcr)o‘E Zoy(e)=1}; and 6,: ’'X Z X Q—
Q(pfn) is defined only if both 8(c,q) is defined and y(o)=1.
k Let X'* denote the set of all finite strings composed of elements of X. The above (and cor-
- fespondingly d,) can be extended to be a partial function of X* X @—=>Q (and 'X X* X Q@—>Q)
 Mill written & (and 4,), and for all s€ Z* and o€ X,6(s0,9) =8(0,8(s,¢)) iff 6(s,q) =¢' and
0(e,q') are all defined (correspondingly, 8.(s0,9)=0,(0,6(s,q)) iff 6,(s,q)=¢’ and 6.(o,¢')
are all defined). ‘ . "‘
For a given @, the language produced by G is
L(G) = {w:w € Z* and 6(w,q,) is defined},
and the language marked by G is
L,(6) = {w:w € L(G) and é(w,qy) € Q,).
In general, there exist in G some state (s) we could not arrive from ¢q but of interst is a gen- ’
®fator whose states are all reachable from go- A generator so defined is said to be accessible!%.
For a given G,, the task to design its controllor is i) to determine the control signals to G, for
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every step and ii) to make decison of how to move from one state to another. A supervisop i .
called because such a controllor has the property that T supervises over G.. Formally, a SUbery;_ |
sor T is defined to be a pair:

T =(8,
where, 8= (X,X,&,1,X,) is a deterministic automaton with a state set X, an alphabet 2
state transition (partlal) function &, X X X—X, an ihitial state zo and 2 marker state set X, X
f:X—>lisa (total) function mapping every state z of X into a corresponding control .

Coupling the T to G,, we will get a supervised discrete event system (SDES), written 7/

G:
CT/G = (X X Qs Zy & X 8y (20590) s X X Qu)s
where, &X8,:ZX XX@—>XX@(ptn) is defined according to (£X &) (o, 2, O =(8(0,3),
8:(£(2)) 50, D). - | S
Now let L,(T/G.) =L.(GYNL(T/G.). By [1], T is proper iff
L.(T/G) = L.(T/G) = L(T/G.),
here ‘ o
L.(T/G): = {w:w € Z*and (3 u)u € Z'*, wu E L..(T/G)},
and L.(T/G,) could be similarly defined.

For a give G,, we can always obtain 7' through efective computation[¥although T may be
empty. The main contribution of this paper is to give a P-algorithm R to reduce the state number
of T and to get a more efficient ‘supervisor T¥= (8", f¥) which will be proved having the equiv-
alent control effect to G,. The algorithm is superior to the one proposed in [4] in that the latter
has been proved to have the exponential complexity w.r.t. the state number || X || . In addi-
tion, we will also indicate through an example that the R can only ensure the 7% is oi)timal w. T,
t. R, which means there exist some circumstances under which R do not ensure T to be real op-
timal. l
2 Equivalent Supervisors

For two supetvisors T, T’ given, we call T and T equxvalent if L(T / G)=L(T'/G,). Fol’-'
mally, let T=(S,f) and 7" = (& ,f') be two supervisors with

S = (X,2,&,20,Xn), f:X—{0,1}%
= (X', 2,8 ,4,X), f:X {0, )7

Definition 2. 1 If there exists 7. X—>X' satisfying ‘

a) w;X—>X' is surjective;

b) n(xe) =zp and X,=7n"1(X,);

¢) & (o,n(x))=n(£(o,z)) onlyif £(o,x) is defined; and

d) £ (w(@))=F(z)
then 7 is called to be a projection from T to T, written «,/T—T' and &' is called a quotlent of 8
under 7.

It has been proved in [ 1] that if there exists such a # between T and 7" and T is prope’’
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, is proper, too. This implies that for a given proper supervisor T and another supervisor

ﬁ‘eﬂ we could find out 2 n.T—T', then, T' must also be a proper supervisor superior (or at
7 equﬁl) to T in state number.
l given T= (S, f), we will try to get T/ = (§',f') using the following construct 2. 1.

Construct 2.1  Let z;,z;€ X satisfy

0 22 8;E X OF Ty 2,€ X— Xos

i) 4 o€ X, E(o,x) (o, z) € {Dzira;) or E(o,a)=¢(0,25);

i) f(z) :=f(z;) is allowed. .

Then, let z; merge into z and process z;, z; and f(;) as follows

a) (Y 0)o€ X and (3 2)z€ {x;52,}  if £(0,2) € {ai,z;} then let & (oyz:) =z;

p) (V 0)0€Z, 3 2)z€ {z,2;} and (3 Dy & {zi,z;}, if £(o,z)=y then let & (0,2:) =
¥i .
o ¥ 2z & {x;,z;} and (3 )0 € Z, if {(0,2) € {zis;) thenllet & (o,z) =1;;
d) f' @) =F(z; ‘
e) Zj: ="

The last process above is to ensure that the state having been merged will never be meet
again in later processes. Intuitively, two states z; and z; can be merged only if they have no com-
mon event, say o, going to different states other than {z;,z;} and have the compatible control f.
We have J

_Proposition 2. 1 There exists a projection between T and T’ derived from 7 through con-
struct 2. 1. '
. Proof Let #.T—T'. We prove if there are two states x;, z; in § satisfying the conditions
i)~iii) in construct 2. 1, the conditions 2)~d) in definition 2. 1 could be satisfied through con-
struct 2. 1.

1) Let X' =X—{z;} and #(z) =z if 1€ X — {z:y2;}, o m(z)=z; otherwise. Apparently
®:T—T' is surjective.

2) Let #y=u; if 2,€ {z:,z;} or Fg==1x¢ otherwise; so n(z¢) =2y By condition i) in construct
2.1 and the definition of 7, we know for z;, n:,-é X, if %€ X, but z;E€ X — X, then = (z) 7
7(z;), which means X,=nr"1(X,).

3) Suppose £(o,z) be defined for some o€ X and z€ X. Consider the following four cases,
tespectively,

i) 2€ X— {z;,3;) and £(0,2) € X— {zi,2;}. Let & (0,2):=¢(0,2). Immediately, & (o,
@) =n(&(o,2));

i) € X— {;,2;} and £(o,2) € {x,z;}. By construct 2.1 ¢), & (0,2)=z;, so & (o,
=g (0,0) =zm=n(£(0,2));

iii) 2€ {z,2;} and £(0,2) €X— {a,3,}. By construct 2.1 b), & (o,x)=¢£(0,2), SO
¢ (0’”(1)) =& (o,25)=E(0,x)=n(&(0,2));

V) 2€ {z;,2;} and £(0,z) € {=;,z;}. By construct 2. 1 a), & (0,z) =z, so & (o,m(x))
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=& (o,2) =z=n(§(0,2));

Thus we have proved & (o,7(z)) =n(£(0,z)) only if &(o,x) is defined.

4) By construct 2. 1 d), if 2€ {@;,z;} then f' (z)=f () otherwise f'(z) is defined ¢, b
equal to f(z). Therefore f/ (w(z))=f(z) naturally holds. Q.E.D

Suppose T’ be a proper supetvisor for G, obtained from T through construct 2. 1. By iter. '
tively using construct 2. 1, we could eventually get a more simplified supervisor T" = ( N m
with || X7 || <<|| X' | <|l X |l . Furthermore, if G, is finite and so is T, then I Xl <o
Since || X || decreases, if possible, at least one after one iteration of construct 2. 1, so aft;,
many iterations of construct 2. 1 we could ultimately get a proper supervisor TV = (8%, ™
which is most simplified w. r.t. construct 2. 1. The above argumentation can be summarizeq x
following two corollaries. : »

Corollary 2.1 Let T=(S,f) given be a proper supervisor for a CDES G.. Let TV denote
the supervisor from T after iteratively using construct 2.1 N times (N is an iuteger and N >(),
Then, TY is proper, too and L(T/G.,)=L(T"/G.). ’

Corollary 2.2 Let T=(S,f) given be a proper supervisor for a CDES G.. If G, is finite,
then there is an integer N (V>>0) such that for all p=>N and p being an integer, Tr=T"(here I
and TV represent using for T construct 2.1 p and N times, respectively).

3 An Algorithm for Supervisor Optimization

For a finite CEDS G, given, corollary 2.,2 hints us there exists N (N >0 and N being an in'
teger) such that 7% is an optimal supervisor of 7 (w.r.t. construct 2.1). Moreover, by corol-
jary 2.1, TY and T are equivalent with respeét to the control effect to G..

Now let T= (S, ) with §=(X,Z,&,20,X,) and f:X—>{0,1}”. Andlet | X || =n being
the. state number and. || £ || =m being cardinality of Z', we have

Algorithm R Optimization for 7 using construct 2. 1.

Comment; flag is an indicator to show whether there are states having been merged (flag
=1) or not (flag=0). ‘
flag: =1;
while flag=1 do
begin flag:=0;

for i:=1 to [ X||—1 do
begin if 7%= *”
then for j:=i+1 to || X do
begin if ;4% %" then
"begin - Construct 2. 1;
if z;7“x%” then flag:=1

© P NP AW

end
end

end
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—

end

Proposition 3.7 Algorithm R can correctly compute T7.

Proof Lines 4 and 6 indicate the construct 2. 1 will be employed for arbitary two different
gates of X; lines 2 and 9 of R show that lines 4 and 6 will be repeated whenever there are states
n X having been merged. Since G, is finite, R will ultimately finish when. 7" = (8%, f¥) and
there exists no state in S that could be further merged, i.e. T¥ is an optimal supervisor of T for
G Q.E.D.

Proposition 3.2 R is a P-algorithm.

Proof ‘ Consider the worst case. In algorithm R, the construct 2. 1 will run at most n(n—
1)2/2 times. In construct 2. 1, the number of processing steps for z; and z; will be less than
om(a+1) (considering there are nm edges 'corr_xing into and m edges going out of every state).
Thus R’ needs at most am (nv+ 1) (n— 1)? basic operation, that is R is an O(mat*) time algorithm.

Q.E.D.

4 Examples

In the following examples, (& denotes an initial state, + a marker state and * arbitary

control. Specifically, ( is an ininial and marker state.

Example 4.1 Suppose T= (S, f) be given by Fig. 1 and Table 1 (rows 1 and 4).

Table 1 Control assignment

BT B
state .’Cg I Z2 | 23 | 24 Ts |.xs | 27 | 8 1 a; 3 5 :: Y
state | 23 | ol |2l |2 | |2} |ad | 2|2l : ' A
B A n W A2

state | z} | 2} | xb | 2} | 22 | 2d | 2} | 2} | 2 . /
foo% %% %| 10 §% %] 10 | O1 | =] 01 |* % 2 r

a 4 3 a 8
! |*%/10]10]10|10}01]01]01]01

Y2

N
FY l% %% % 101101001 |01 | 01 |% = Fig.1 A supervisor

Hete, = {a),az,p1, P2, 71,72} »Z.={P1,P2}. After applying R. we get T'= (8!, f!) as illus-
trated in Fig. 2 below and Table 1 (rows 2 and 5). It is easy to verify that T! is an optimal su-
Pervisor to T.

1 a; 2

A A

. .

9
iy s - ¢} v
a2
L o TQ’B' PRPRED >
Fig. 2 One optimal supervisor of Fig. 1 Fig. 3 Another optimal supervisor of Fig. 1

Example 4. 2 Suppose T'= (S,f) be as with example 4. 1 but z, is renumbered as z7, ; as

T 23 ag Ty, x4 as Zg, Tg as 4 and z; as z3, then the simplified Tl (8!, f1) will be another form
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as illustrated in Fig. 3 below and Table 1 above (rows 3 and 6).
This example shows that for a given T’ there may be more than one T* which are all ODtiny
supervisors from T w.r. t. R.
Example 4. 3 Consider 2 supervisor T whose corresponding S and f are given in Fig. 4 5y q
Table 2 (rows 1 and 4) below

Table 2 Control assignment ] < 3 4
state Zs z z, Z3 4 zs ¥ B a
state A4 | o | ot | 2| A |4 ) f 3
state o |4 =t z¥ @ | A af o . .
f 0 * * * * % P J
o 0 % * * * * 5 8 ‘
il 0 0 0 0 0 0 . Fig.4 A supervisor to be optimized

Here, Z= {a,Bs7} > Te={y}. After applying R, we get T"
= (8!, f) as shown in Fig. 5 and Table 2 (rows 2 and 5).
Note , however, T is not a real optimal supervisor from T

but an optimal supervisor W. r. t. R. In fact, the real optimal

supervisor T¥ from T is as illustrated in Fig. 6 and Table 2
above (rows 3 and 6).

a

S

J
This example indicates algorithm R will sometimes result : A

4
in a sub-optimal supervisor, which may be considered to be a \i,/

Fig.5 An optimal (w.r.t. R)

sort of retribution for the algorithm to be polyno‘mla’xl»- time supervisor of Fig. 4

solvable.
5 Conslusion ‘ atp+v
We proposed an algorithm to solve the problem of super- 6

visors optimization. In most cases, the algorithm will trans-

form any given supervisor into a optimal one w.r. t. R (al- .

Fig.6 A real optimal supervisor
though sometimes there may exist many such supervisors with of Fig. 4
diffrerent topological structures or control assignments). In reality, only if there were no so-

called deadlocks in T, will there be a unique optimal supervisor in the sense that its states number

is minimum as will be discussed in a future article. ’
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