Optimization of the Supervisor for a Given Discrete Event System

JIANG Zhiping and WU Zhiming

(Department of Automatic Control, Shanghai Jiao Tong University Shanghai, 200030, PRC)

Abstract: Based on the supervisor model proposed by Ramadge and Wonham, a new optimization design idea is introduced which makes the number of states of a supervisor comparatively minimum. A P-algorithm with full proof is suggested. Three examples are given.

Key words: discrete event systems; control; generator; optimization; algorithm

Introduction

A discrete-event system, according to the model established by Ramadge and Wonham^[1], can be expressed using a so-called generator $G = (Q, \Sigma, \delta, q_0, Q_m)$, where Q is a state set, Σ an alphabet, $\delta: \Sigma \times Q \rightarrow Q$ a partial function (pfn), q_0 an initial state and $Q_m \subseteq Q$ a marker state set. G is generally supposed to be deterministic: i) q_0 is unique and ii) for all $\sigma \in \Sigma$, $q \in Q$, $\delta(\sigma, q) = q' \in Q$ is unique or $\delta(\sigma, q)$ is undefined.

Let $\Sigma_c \subseteq \Sigma$ and $\Sigma_* \subseteq \Sigma$ represent the controllable and uncontrollable alphabet set in Σ respectively with $\Sigma_c \bigcup \Sigma_* = \Sigma$ and $\Sigma_c \cap \Sigma_* = \emptyset$. Introducing a control mechnism Γ into G, we obtain a controlled discrete event system (CDES) $G_c = (Q, \Gamma \times \Sigma, \delta_c, q_0, Q_m)$, where, Q, Σ , q_0 and Q_m are as defined before; $\Gamma = \{\gamma: \gamma: \Sigma \to \{0, 1\} \text{ and } (\forall \sigma) \sigma \in \Sigma_*, \gamma(\sigma) = 1\}$; and $\delta_c: \Gamma \times \Sigma \times Q \to Q(\text{pfn})$ is defined only if both $\delta(\sigma, q)$ is defined and $\gamma(\sigma) = 1$.

Let Σ^* denote the set of all finite strings composed of elements of Σ . The above δ (and correspondingly δ_c) can be extended to be a partial function of $\Sigma^* \times Q \rightarrow Q$ (and $\Gamma \times \Sigma^* \times Q \rightarrow Q$) still written δ (and δ_c), and for all $s \in \Sigma^*$ and $\sigma \in \Sigma$, $\delta(s\sigma,q) = \delta(\sigma,\delta(s,q))$ iff $\delta(s,q) = q'$ and $\delta(\sigma,q')$ are all defined (correspondingly, $\delta_c(s\sigma,q) = \delta_c(\sigma,\delta(s,q))$) iff $\delta_c(s,q) = q'$ and $\delta_c(\sigma,q')$ are all defined).

For a given G, the language produced by G is

$$L(G) = \{w : w \in \Sigma^* \text{ and } \delta(w, q_0) \text{ is defined}\},$$

and the language marked by G is

$$L_m(G) = \{w, w \in L(G) \text{ and } \delta(w, q_0) \in Q_m\}.$$

In general, there exist in G some state(s) we could not arrive from q_0 but of interst is a generator whose states are all reachable from q_0 . A generator so defined is said to be accessible^[2].

For a given G_c , the task to design its controllor is i) to determine the control signals to G_c for

every step and ii) to make decison of how to move from one state to another. A supervisor is s_0 called because such a controllor has the property that T supervises over G_c . Formally, a supervisor T is defined to be a pair:

$$T = (S, f)$$

where, $S = (X, \Sigma, \xi, x_0, X_m)$ is a deterministic automaton with a state set X, an alphabet Σ , state transition (partial) function $\xi: \Sigma \times X \to X$, an initial state x_0 and a marker state set $X_m \subseteq X$, $f: X \to \Gamma$ is a (total) function mapping every state x of X into a corresponding control γ .

Coupling the T to G_c , we will get a supervised discrete event system (SDES), written T/G_c :

$$T/G_c = (X \times Q, \Sigma, \xi \times \delta_c, (x_0, q_0), X_m \times Q_m),$$

where, $\xi \times \delta_c$: $\Sigma \times X \times Q \rightarrow X \times Q$ (pfn) is defined according to $(\xi \times \delta_c)(\sigma, x, q) = (\xi(\sigma, x), \delta_c(f(x)), \sigma, q)$).

Now let
$$L_c(T/G_c) = L_m(G_c) \cap L(T/G_c)$$
. By $[1]$, T is proper iff $\overline{L}_c(T/G_c) = \overline{L}_c(T/G_c) = L(T/G_c)$,

here

$$\overline{L}_m(T/G_c) := \{w : w \in \Sigma^* \text{ and } (\exists u)u \in \Sigma^*, wu \in L_m(T/G_c)\},$$

and $\overline{L}_m(T/G_c)$ could be similarly defined.

For a give G_c , we can always obtain T through effective computation^[3] although T may be empty. The main contribution of this paper is to give a P-algorithm R to reduce the state number of T and to get a more efficient supervisor $T^N = (S^N, f^N)$ which will be proved having the equivalent control effect to G_c . The algorithm is superior to the one proposed in [4] in that the latter has been proved to have the exponential complexity w. r. t. the state number ||X||. In addition, we will also indicate through an example that the R can only ensure the T^N is optimal w. t. t. t, which means there exist some circumstances under which R do not ensure T^N to be real optimal.

2 Equivalent Supervisors

For two supervisors T, T' given, we call T and T' equivalent if $L(T/G_o) = L(T'/G_o)$. Formally, let T = (S, f) and T' = (S', f') be two supervisors with

$$S = (X, \Sigma, \xi, x_0, X_m), \quad f: X \to \{0, 1\}^{\Sigma},$$

$$S' = (X', \Sigma, \xi', x'_0, X'_m), \quad f': X' \to \{0, 1\}^{\Sigma}$$

Definition 2.1 If there exists $\pi: X \rightarrow X'$ satisfying

- a) $\pi: X \to X'$ is surjective;
- b) $\pi(x_0) = x'_0$ and $X_m = \pi^{-1}(X'_m)$;
- c) $\xi'(\sigma, \pi(x)) = \pi(\xi(\sigma, x))$ only if $\xi(\sigma, x)$ is defined; and
- d) $f'(\pi(x)) = f(x)$

then π is called to be a projection from T to T', written $\pi: T \to T'$ and S' is called a quotient of S under π .

It has been proved in [1] that if there exists such a π between T and T' and T is proper,

No. 3 T' is proper, too. This implies that for a given proper supervisor T and another supervisor then the could find out a $\pi: T \to T'$, then, T' must also be a proper supervisor superior (or at T', if we could find out a $\pi: T \to T'$), then, T' must also be a proper supervisor superior (or at (e^{ast}) to T in state number.

Given T = (S, f), we will try to get T' = (S', f') using the following construct 2.1.

Construct 2. 1 Let $x_i, x_j \in X$ satisfy

- i) $x_i, x_j \in X_m$ or $x_i, x_j \in X X_m$;
- (i) $(\forall \sigma) \sigma \in \Sigma, \xi(\sigma, x_i) \cup \xi(\sigma, x_j) \in \{\emptyset, x_i, x_j\} \text{ or } \xi(\sigma, x_i) = \xi(\sigma, x_j);$
- iii) $f(x_i) := f(x_j)$ is allowed.

Then, let x_i merge into x_i and process x_i , x_j and $f(x_j)$ as follows

- a) $(\forall \sigma)\sigma \in \Sigma$ and $(\exists x)x \in \{x_i, x_j\}$, if $\xi(\sigma, x) \in \{x_i, x_j\}$ then let $\xi'(\sigma, x_i) = x$;
- b) $(\forall \sigma)\sigma \in \Sigma$, $(\exists x)x \in \{x_i, x_j\}$ and $(\exists y)y \in \{x_i, x_j\}$, if $\xi(\sigma, x) = y$ then let $\xi'(\sigma, x_i) = y$
- c) $(\forall x)x \in \{x_i, x_j\}$ and $(\exists \sigma)\sigma \in \Sigma$, if $\xi(\sigma, x) \in \{x_i, x_j\}$ then let $\xi'(\sigma, x) = x_i$;
 - d) $f'(x_i) = f(x_j)$;
 - e) $x_i := " * "$.

y;

The last process above is to ensure that the state having been merged will never be meet again in later processes. Intuitively, two states x_i and x_j can be merged only if they have no common event, say σ , going to different states other than $\{x_i, x_j\}$ and have the compatible control f. We have

There exists a projection between T and T' derived from T through con-Proposition 2. 1 struct 2.1.

Proof Let $\pi: T \to T'$. We prove if there are two states x_i , x_j in S satisfying the conditions i)~iii) in construct 2.1, the conditions a)~d) in definition 2.1 could be satisfied through construct 2.1.

- 1) Let $X' = X \{x_j\}$ and $\pi(x) = x$ if $x \in X \{x_i, x_j\}$, or $\pi(x) = x_j$ otherwise. Apparently $\pi: T \to T'$ is surjective.
- 2) Let $x_0' = x_i$ if $x_0 \in \{x_i, x_j\}$ or $x_0' = x_0$ otherwise, so $\pi(x_0) = x_0'$. By condition i) in construct 2. 1 and the definition of π , we know for x_i , $x_j \in X$, if $x_i \in X_m$ but $x_j \in X - X_m$ then $\pi(x_i) \neq x_j$ $\pi(x_j)$, which means $X_m = \dot{\pi}^{-1}(X_m)$.
- 3) Suppose $\xi(\sigma,x)$ be defined for some $\sigma \in \Sigma$ and $x \in X$. Consider the following four cases, respectively.
- i) $x \in X \{x_i, x_j\}$ and $\xi(\sigma, x) \in X \{x_i, x_j\}$. Let $\xi'(\sigma, x) := \xi(\sigma, x)$. Immediately, $\xi'(\sigma, x) := \xi(\sigma, x)$. $\pi(x)) = \pi(\xi(\sigma,x));$
- ii) $x \in X \{x_i, x_j\}$ and $\xi(\sigma, x) \in \{x_i, x_j\}$. By construct 2. 1 c), $\xi'(\sigma, x) = x_i$, so $\xi'(\sigma, x) = x_i$, so $\pi(x)) = \xi'(\sigma, x) = x_i = \pi(\xi(\sigma, x));$
- iii) $x \in \{x_i, x_i\}$ and $\xi(\sigma, x) \in X \{x_i, x_i\}$. By construct 2. 1 b), $\xi'(\sigma, x_i) = \xi(\sigma, x)$, so $\xi'(\sigma,\pi(x)) = \xi'(\sigma,x_i) = \xi(\sigma,x) = \pi(\xi(\sigma,x));$
 - iv) $x \in \{x_i, x_j\}$ and $\xi(\sigma, x) \in \{x_i, x_j\}$. By construct 2.1 a), $\xi'(\sigma, x_i) = x_i$, so $\xi'(\sigma, \pi(x))$

$$= \xi'(\sigma, x_i) = x_i = \pi(\xi(\sigma, x));$$

Thus we have proved $\xi'(\sigma, \pi(x)) = \pi(\xi(\sigma, x))$ only if $\xi(\sigma, x)$ is defined.

4) By construct 2.1 d), if $x \in \{x_i, x_j\}$ then f'(x) = f(x) otherwise f'(x) is defined to f(x). Therefore $f'(\pi(x)) = f(x)$ naturally holds. Q. E. D

Suppose T' be a proper supervisor for G_c obtained from T through construct 2. 1. By $\operatorname{itera}_{A_c}$ tively using construct 2. 1, we could eventually get a more simplified supervisor T'' = (S'', f'') with $||X''|| \le ||X'|| \le ||X||$. Furthermore, if G_c is finite and so is T, then $||X|| < \infty$. Since ||X|| decreases, if possible, at least one after one iteration of construct 2. 1, so after many iterations of construct 2. 1 we could ultimately get a proper supervisor $T^N = (S^N, f^N)$ which is most simplified w.r.t. construct 2.1. The above argumentation can be summarized as following two corollaries.

Corollary 2. 1 Let T = (S, f) given be a proper supervisor for a CDES G_c . Let T^N denote the supervisor from T after iteratively using construct 2. 1 N times (N is an integer and $N \ge 0$). Then, T^N is proper, too and $L(T/G_c) = L(T^N/G_c)$.

Corollary 2. 2 Let T = (S, f) given be a proper supervisor for a CDES G_o . If G_o is finite, then there is an integer $N(N \ge 0)$ such that for all $p \ge N$ and p being an integer, $T^p = T^N$ (here T^p and T^N represent using for T construct 2.1 p and N times, respectively).

3 An Algorithm for Supervisor Optimization

For a finite CEDS G_c given, corollary 2.2 hints us there exists $N(N \ge 0$ and N being an integer) such that T^N is an optimal supervisor of T (w. r. t. construct 2.1). Moreover, by corollary 2.1, T^N and T are equivalent with respect to the control effect to G_c .

Now let T = (S, f) with $S = (X, \Sigma, \xi, x_0, X_n)$ and $f : X \to \{0, 1\}^{\Sigma}$. And let ||X|| = n being the state number and $||\Sigma|| = m$ being cardinality of Σ , we have

Algorithm R Optimization for T using construct 2.1.

Comment: flag is an indicator to show whether there are states having been merged (flag = 1) or not (flag = 0).

```
1. flag := 1;
```

2. while
$$flag = 1$$
 do

3. begin flag:
$$= 0$$
;

4. for
$$i = 1$$
 to $||X|| - 1$ do

5. begin if $x_i \neq " * "$

6. then for
$$j_1 = i + 1$$
 to $||X||$ do

7. begin if $x_i \neq "*"$ then

9. if
$$x_j \neq "*"$$
 then flag: = 1

end

end

end

Proposition 3.1 Algorithm R can correctly compute T^N .

Proof Lines 4 and 6 indicate the construct 2.1 will be employed for arbitary two different states of X; lines 2 and 9 of R show that lines 4 and 6 will be repeated whenever there are states in X having been merged. Since G_c is finite, R will ultimately finish when $T^N = (S^N, f^N)$ and there exists no state in S that could be further merged, i. e. T^N is an optimal supervisor of T for G_c . Q. E. D.

Proposition 3.2 R is a P-algorithm.

Proof Consider the worst case. In algorithm R, the construct 2.1 will run at most $n(n-1)^2/2$ times. In construct 2.1, the number of processing steps for x_i and x_j will be less than 2m(n+1) (considering there are nm edges coming into and m edges going out of every state). Thus R needs at most $nm(n+1)(n-1)^2$ basic operation, that is R is an $O(mn^4)$ time algorithm. O. E. D.

4 Examples

In the following examples, \odot denotes an initial state, • a marker state and * arbitary control. Specifically, \odot is an initial and marker state.

Example 4.1 Suppose T = (S, f) be given by Fig. 1 and Table 1 (rows 1 and 4).

Table 1 Control assignment

•	state	x_9	x_1	x_2	x_3	<i>x</i> ₄	x_5	. x ₆	<i>x</i> ₇	<i>x</i> ₈
	state	x_{b}^{1}	$x_{\overline{1}}$	x_1^1	x_2^1	x_2^1	x_3^1	x_3^1	x_4^1	x_i
	state	<i>x</i> }	x	xł	x	x_6^1	x_6^1	x_3^1	x_3^1	x}
	f	* *	* *	10	* *	10	01	* *	01	* *
	f^1	* *	10	10	10	10	01	01	01	01
1.7	$f^{\scriptscriptstyle N}$	* *	* *	10	10	10	01	01	01	* *

Fig. 1 A supervisor

Here, $\Sigma = \{\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2\}$, $\Sigma_c = \{\beta_1, \beta_2\}$. After applying R. we get $T^1 = (S^1, f^1)$ as illustrated in Fig. 2 below and Table 1 (rows 2 and 5). It is easy to verify that T^1 is an optimal supervisor to T.

Fig. 2 One optimal supervisor of Fig. 1

Fig. 3 Another optimal supervisor of Fig. 1

Example 4. 2 Suppose T = (S, f) be as with example 4. 1 but x_1 is renumbered as x_7 , x_2 as x_1 , x_3 as x_2 , x_4 as x_6 , x_6 as x_4 and x_7 as x_3 , then the simplified $T^1 = (S^1, f^1)$ will be another form

as illustrated in Fig. 3 below and Table 1 above (rows 3 and 6).

This example shows that for a given T, there may be more than one T^l which are all optimal supervisors from T w.r.t. R.

Example 4.3 Consider a supervisor T whose corresponding S and f are given in Fig. 4 and Table 2 (rows 1 and 4) below

Table 2 Control assignment

Taon						
state	x_6	x_1	x_2	x_3	x_4	<i>x</i> ₅
state	xi	<i>x</i> }	x_1^1	x_2^1	x_3^1	xì
state	x_6^N	x_{ℓ}^{N}	x_6^N	x_6^N	x_{6}^{N}	x_{6}^{N}
f	0	*	*	*	*	*
f^1	0	*	*	*	*	*
f ^N	0	0	0	0.	0	0

A supervisor to be optimized

Here, $\Sigma = \{\alpha, \beta, \gamma\}$, $\Sigma_c = \{\gamma\}$. After applying R, we get T^1 $=(S^1, f^1)$ as shown in Fig. 5 and Table 2 (rows 2 and 5). Note , however, T^1 is not a real optimal supervisor from Tbut an optimal supervisor w.r.t. R. In fact, the real optimal supervisor T^N from T is as illustrated in Fig. 6 and Table 2 above (rows 3 and 6).

This example indicates algorithm R will sometimes result in a sub-optimal supervisor, which may be considered to be a sort of retribution for the algorithm to be polynomial-time solvable.

An optimal (w.r.t. R) Fig. 5 supervisor of Fig. 4

Conslusion 5

We proposed an algorithm to solve the problem of supervisors optimization. In most cases, the algorithm will transform any given supervisor into a optimal one w.r.t. R (although sometimes there may exist many such supervisors with

Fig. 6 A real optimal supervisor of Fig. 4

diffrerent topological structures or control assignments). In reality, only if there were no socalled deadlocks in T, will there be a unique optimal supervisor in the sense that its states number is minimum as will be discussed in a future article.

References

- [1] Ramadge, P. J. and Wonham, W. M.. Supervisory Control of a Class of Discrete-Event Processes. SIAM J. on Contr. and Optimization, 1987, Jan. 25(1):206-230
- [2] Eilenberg, S. . Automata, Language and Machines. Academic Press, New York, 1974, A
- [3] Wonham, W. M. and Ramadge P. J.. On the Supremal Controllable Sublanguage of a Given Language. SIAM J. on

Contr. and Optimization, 1987, May, 25(3):637-659

Vaz, A. F. and Wonham, W. M.. On Supervisor Reduction in Discrete-Event Systems. Int. J. Control, 1986, 44(2): 475 - 491

给定离散事件系统监督器的优化

蒋智平 吴智铭 (上海交通大学自动控制系,200030)

瘤要: 本文基于 Ramadge 和 Wonham 等人提出的监督器模型,介绍一种新的优化设计思想,它可使 监督器的状态数相对最少化并由此提出一个多项式时间算法. 最后附以三个例子.

关键词: 离散事件系统; 控制; 产生器; 优化; 算法

本文作者简介

茲智平 1959 年生, 1981 年获上海交通大学计算机专业学士学位; 1987 年获上海交通大学微机研究所硕士学 位,1992 年获上海交通大学自动控制博士学位. 1982 年初至 1985 年 9 月及 1987 年底至 1989 年 9 月曾在镇江船舶 学院计算机系任教并被评为讲师职称. 早期研究方向有计算机系统程序设计, 微型计算机应用及计算机通讯数据加密 签. 1989 年后主要从事离散事件系统的仿真和控制的研究.

吴智铭 1936 年生, 1958 年后在上海交通大学电机系执教, 1979 年至 1981 年在英国 UMIST 控制系统中心进 格, 1985年任教授, 1986年任博士生导师. 主要研究方向包括离散事件动态系统的理论和仿真, 智能控制与决策等.

"何潘清漪优秀论文奖"评审小组公告

鉴于 1992 年应征论文的质量未达授奖要求,评审小组决定本年度暂停授奖,将名额 顺移至下一年度。希望作者们继续踊跃投稿。

> '何潘清漪优秀论文奖"评审小组 一九九三年五月