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Abstract; In this article, a new graph-based method dealing with supervisory control problem
with blocking (SCPB) is presented , it can be used to analyze and solve SCPB effectively and intuitive~
ly. Besides, several techniques improving each of satisfying measure (SM) and blocldng measure
(BM) are given. Finally, we point out the properties of the techniqué got in our paper and develop
strategies to improve both measures successively in order to optimize a given supetvisor.
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1 Introduction

In discrete event systems,blocking is an important issue. Supervisory control problem With
blocking (SCPB) is more general than supervisory control problem of nonblockingl!l, and a
blocking supervisor may actually perform better than a nonblocking one, because a nonblocking
supervisor is conservative in the sense that it must prevent all behaviors that lead to blocking,
which may considerably constrain the behavior of the system if there are séveral uncontrollable
events. Thus one may be willing to risk blocking in order not to overly constrain r,hé behavior of
the system. If blocking indeed occurs, then it will be resolved by some external intervention and
the execution of the system will be resumed. In the following, the descriptidn of SCPB and its
performance measures will be given briefly. v

The behavior of a discrete event process G is usually modeled in terms of two “languaseS”
L(@) and L(G), 1t Im(G) =L(G) then G is said to be nonblocking. This means that every tra®
that G generates can be extended to a marked trace. In supervisory control, it is customary te as-
sume that an uncontrolled discrete event process G is nonblocking. However, this may no longer
be true when G is being controlled by a supervisor S. If L.(S/GYCL(S/G), then S issaid ©0 be
blocking. In order to solve SCPB, briefly, one must design a supervisor S such that L(S/ G)gl‘a
and Lc(S/C)C Lam where La and Lam are two given languages representing the admissible be

havior for all traces and the admissible behavior for marked traces respectively. . They are required

to satisfy following constraints.
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Lo =La, La < L(G), Lam< Lm(G), and Lam < La.

rformance of a supervisor is characterized in terms of a satisfving measure (SM) and a
ne P b : v

7 —
cking measure (BM), which are Le(S/G) [} Lam and L(8/G) — Le(S/G ] respectively.

plo
hus the design problem is one of trade-off between SM and BM, since an improvement of the

formef is generally accompanied by a deterioration of the latter, and vice-versa. It is clear that
SCPB’ does not possess a unique optimal solution generally. Therefore, we define the class of ad-
missible solutions of SCPB as. : ’ ;

Las: = (K. (Lam} S K CLad) AN (K =K%Y A (BZu ) L(G) < &)
gnder the additional assumption Lem=La [} ILm(G). If L(S/G) € Las, then we say that § is an
admisSib!e solution of SCPB. When we combine both measures:into a unified performance mea-
qures SCPB couid be formulated as follows. Examine constraints given above, and find § such

that L(S /G) € Las minimize the performance measure

J: = [Lam — SM(8)] UJ BM(S) = SM*(S) |J OBM(S) |J IBM(S)
where SM(8) = Lam — SM(S) = Lam — Lc(S/G),
OBM(8) == L(S/G) — Lam, IBM(S) = L(S8/G) [ Lam — Lc(S/G).
Because of the disjoint unions in the expression of J, there are several incomparable lan-
guages in the lattice Las that minimize J. ‘ . _
In the fpowing sections, -we will give some graph- based description about regular lan-

- guages among which there are some relations and properties of the description. Then, several

techniques improving each of SM and BM are presented, Finally, some properties of these tech-
‘ ﬁiques are pointed out and the advantage of our method. is reviewed briefly.

2 Graph-Based Description - .

- A discrete event process can be modeied as a directed-graph G=(V,E). E(»-) is defined as
all edges which are directed from v to any states in &, and Rg(A) is the set of all states in G that
: ?,Za{e_reachable from A. If v is a state in G then G—wv denotes a subprocess of ¢ obtained by deleting
‘( v and all edges incident on v from G. If e is a edge in G, then G—e is a subprocess Qf G obtained.
by deleting e from @. A subprocess ¢/ = (}/, 5/ Y@= (V,E) is called an induced subprocess if
B contains all the edges of F whose end poinisare in ¥/, in this case we say that ¢/ is induced by

V' and ¢ =G— (V' ,E'). The process induced by 1/ is denote by (V)¢ A subprocess G = (V',
B) is called realjzable if given v €V’ ,Y o, such that (v,0,u) € Bu, get u€ V. Thatis, a sub-
kDrocegS &' G is realizable if and only if every uncontrollable edge going out of a state in ¢ is an
edge of G,

In this section we will develop some methods combining several automata  whose languages
- Possess some including relations, into one directed-graph which has specified constructive charac-
fer. In the following, we assume that all language concerned are regular languages such that they.
@n be described by finite automata. In addition, the directed-graphs in this paper are also as-

Sy
Med 1o pe deterministic.
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Given languages L, sLoyLay s.t. L1z2L,2 L3, whose automata, correspondingly , are G
(Qis 2,85 Gi0» @) (3=1,2,3) s. t. G;=A4Ac(G)s Lm(G)=L;, L(G) ==I4; construct automag,
H(:=1,2,3) as follows. ‘ :
Let Hy = (X3,Z,f3,%0s X3m) »

where

=Qs X @ X @, -V (93,920 € Xs,
(85(0,q3) s 62(0,42)» 6:(0,q1)), if 8i(o,g) 1 (i = 1,2,3),
f3(o,(g5,92,91)) = { . . :
undefined, otherwise.
Let Xy={2:2€ X3,3 0€ Z*, f3(0,20) =2}, thus Xsn= (Qsn X Qzn X Q1) [ Xswcs then
Hy = (X3ws Z» 35 T0o» Xsm): '
Let Hy=(X;, Z, f2, %0, X2a), Where X,= (QsUQze)XQzXQnV (93:92’91)63(2,
((05(0,43)» 82(0,q2) s 01(0,a1)), if 6i(o,g) 1 (G = 1,2,3),
£2(0,(95,0250)) = i@&, 800402 » 6,(0,41)) 5 if 8(0,g)1G = 1,2),

undefmed otherwise.

Let Xp={2.:2€ X;,3 0€ Z*, fi(w,20) =2}, thus Xm-—-((QsU(Is:)XQmXQm)ﬂXm, then
. H,= X3y %, 2 %o» Xom)e
Let Hy=(X;, X, f1, %os Xim), Where X1=(QaUQse)X(QzU%)XQnV (g3,92,91) € Xy,
(03(0,q3) 5 62(0,G2) &(o,q)), if 6(o,q) 1t = 1,2,3),
(gses 62(0,q2) s 01(,q1)) if 6:(0,g)1 G = 1,2),
F1€0,(g3:92591)) =
l PR (q3¢9 G2e 5 51(”:‘11)), if 6](0';01)!9

undefined, otherwise.

Let Xjp={z:2€ X;,3 0€Z*, fi(w,z0) =2}, thus Xi,= ((@sUga) X (QzUQze) X Q1) N X s
then
= (Xias Z's f25 Zo» Xim)-

Proposition 1 L(H))=L;,, Lm(I;)=L;, i=1,2,3. H; is nonblocking process, and they
are induced by their states. » .

Proposition 2 Hj is the subgraph of H,, Hy is the subgraph of I}, and Xsa& XS Xime

Proposition 3 YV 2€ Xpu— Xows e=(2,0,¥) € E;(z—), then y€ Xau;

VYV 2E€ X1p— Xons e=(z,0,y) € E;(z—), then Y€ Xpne

That is, the states outside Hs can not be connected to I15 but the states within H; may be
connected to states outside Hj;, so is H,.

Given finite automation with blocking @ s. t. ' L(G) =L, Lm(G)=Lm, Im(GYCL(G)> its
directed-graph can be drawn out as following. According to method given above, construct H"
and H; such that L(H) =L, Hy=4c(l,), LI =Tm, Lm(H;)=Lm, Hy=Ac(Hy), %
H, is the subgraph of Hy. If Xy, is redefined as X;. without other changes, the redefined H1
could model the behavior of G. |

So, given closed language L, Lz, L3, s.t. [;2L,=2Ls, and languages Lin, Lows L
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et exist bolcking automata G;(t=1,2,3), which satisfy L(G;)=L;, Lm(G;)=L;,. H; can be
oonsu-ucted by similar ways given above just changing a little as following. Let '

Xam = (@3 X @2 X Q) [ Xow>

Xom = ((Qs U“]aa) X @ X @) N Koo

Xy = ((Qs U 9s) X (@, U %2 X Q) [ Xiar
Apart from X, X,, X, and nonblocking property, the other properties given in proposi-
1~3 are remained.
Proposition 4 If L, " L., i7j, then XipC X ‘
Given closed languages L,, Ly, L3, s.t. Ly=2L,, L;-2L; and language L,,, Lyn, L3, the
correspondent G;(i=1,2,3) with blocking s.t. L(G:)=L;, Lm(G;) =L

tion

Construct Hy= (X3, X, f3, o5 Xsm)» Where Xs=Qi X (Q:U2) X Q3> ¥ (41522,93) € X3,
(61(o,q1) 5 0:(0492) » 63(05q3)), if 60, g) 1 G = 1,2,3),

F3(05(@1592593)) = {(61(‘7’411)a G2y 03(0,q3)), if 6:(0,¢)1(t = 1,3), and 8.(v,q) undefined,
undefined, otherwise.

Define X&w as above, thus X3ﬂ= (le (QZUq%) XQ;;,,.) nX&w’ then II3= (Xs,‘,,z’,fa,zo,Xm)

Construct Hy=(X3,Z,f3s %05 Xzm), Where Xo=Q X @2 X (QsUQu) s YV (g1992593) € X,
(61(ayq1) s 62(0592) 63(0593)), if 6(o,g)1 (G = 1,2,3),

f2(o,(q1,92598)) = {(&(qu), 62(04192) yq3) » if 6:(0,g:) 1 (i = 1,2), and 63(0,gs) undefined,
undefined, otherwise.

Define Xy, as above, thus Xp.= (@ X @2a X (@3 q3.) ) () Xom»s then Ho= (Xpa» X 2:Z0sXz)

Construct Hy= (X,,X,f1, %3y Xin), Where X;=(Q; X (QzUQb)X (QaU(Ise)) s V (215925
B EX,, )
(01(oyq1) 02(05q2) 5 O3(04gs)), if 6i(oyg) 1 G = 1,2,3),
(01(0,q1) s g2y 65(04qs)), if 6:i(0,4:)1(: = 1,3), and 8:(0,q,) undefined,
$1(0, (g1,92,93)) = < (6:1(o,q1)» 62(0,q2), g5, if 6:(0,g)1(i = 1,2), and é3(e,qs) undefined,
(6:(04q1).s Q2esq3e) » if 01(0,q1) 1, and &i(o,q¢) (G = 2,3) undefined, |
undefined, otherwise.
Define X, as above, thus Xyn= (@1 X (QzU%«)X (Q3Uq3e)) N X1as then Hy=(Xyus Xy f15%05
Xin).
Propesition § H, and H, are subgraph of H,; L(I,)=L;, Lm(H;)=L;y, t=1,2,3; H;
are induced by their states.
~ Proposition 6V 2€ Xio— Xows (2,0,9) € By(z—), then 3 € Xpue;
V 2€ Xi— Xawy (2,0,9) € Er(z—), then y€ Xgoo
That is, the states outside H, can not be connected to I, but the states within 7, may be
®onnecteq to H,, so is Hs.
Proposition 7  if LsuS LinC Lins then XgnC Xpnls Xim.
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% Improving Blocking Solutions

Given discrete event process & 8.1, L(G)= Im(G); given spemfrcatnon languages: Layy,

s t. Ta=1ILa, LanCLm(G), LamCLaL(G); design supervisor § such that L(S/G) L, ang
Le(8 /G, & Lam , which makes § become admissib?e. The a@ditiqnal desires will be given in detail
respectively in the following.

To design §, first we will develop a graph descnptlon about L(G) La, Lam in one dlrected
graph, then find the subgraph L(S / @) which satisfies the whole given spec1f1catxon Thus We cap
get closed system language L (S/G) and siate feedback rule f from the subgraph( L{S/®) of
L(G). ’ '
2.1 Finding Ophmak Nonblockmg Solutmn B

Assume H,, Hy, H; denote the graph of L(G), La, Lam respectlvely, then Xng:_le, Hl
and H, are co-accessible. Because the states outside 13 'can not be connécted to Xgns to Mmake S
become nonblockmg, the graph of L(S/G) must be co- acneSS|bie and the maximal 1eahzab1e sub-
graph of Hs. Sc we get the following algorithm computmg the subgraph L(S/&) of ( G)

Algorithm |1 let F=H,= (¥, E,) iterate

T DletYo=A{z.Y €Y Xsmy 3 (@,0,9) EBu(z—),y€ Y} S »
' citerate Yy =Y, ) {2V 2€Y=Y,, T (z;0,9) € Eu(ac-—),yE Y.},
terminate when Y=Y,
if Y,=(), or z,E 7Y}, then stop.
let Fy=F—Y,= (Xs,E5).
® compute max P(Xs(") Xan) swithin X5,
“let Xg=max P(XsNXs) s
if & X5, then F=(/J, stop.
B let Fg== (Xedw,
@) compute Rp (z0)
let X7= Ry (20) N Xe, Fr= <X7>z« >
let F=F;,
go to @

Where P(X) represents a pre—vtable subset of state set X%, When the algorithm stops, the
graph of L(S/G) is F, its marked states are ¥ [} X3, ‘
2.2 'Finding'(lonipie%e!y Satisfying Solution (CSS) under Constraint Min BM ;

CSS means Le(S/@) = Lam, in consxderatlon of that 773 is co- acccessnble 'so the graph of
L(8/6) must include the graph of Lam; to minimize BM, the graph of L(S/G) should be 28
small as possible. Thus the graph of L(S/G) must be the mxmmaa realizable subgraph of L(G)»
which contains the graph Lam if 1t is within thé maximal realizable subgraph of La with feSPect_
to L{G). Then the following algorithm computes the graph L(S / G’) desired. '

Algorithm 2 let F=1I3=(Y,B,), Yo=Y, Eo=F,, '

iterate ¥y =Y, {u.¥ u€Y,, V¥ o, such that (v,0,u) € Buv—)},
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Eir1,=B,UBu(¥,—),
terminate when ¥, ;=Y,,
then F=(Y,, B,), stop.
If F is the subgraph of Hy, then F is the graph about L(S/G). If ¥,— X7, then CSS
3 3 Reducing BM without Reducing SM
Given §s.t. L(S/M T La, Le{S/G) T Lam, § with blocking. It is desired to find $; on
e pasis of 8 in order to min BM without reducing SM. Assume H,, H,, H,denote the graph of
(@5 La, L(S/G) respectively. Appavently, X, X, The graph L(S;/G) is certain to be
within H,y. Find maximal state set X, which can be connected to X in Iy, and construct a in-
duced subgraph of I, by X.. Hence, it is easy to get the graph L(S,/G). The algorithm is as fol-
Jowinge. ‘ ' ' ' R
Algorithm 3 let Yo=X,,
iterate Yo, =Y, U {z.¥ «€X,, 3 (z,(f,y)f E(z— Y, yE€Y,)
.terminate when YVopi=Yy, -
then X,=Y,
et F=(X)p=(Y"E), Y=Y,
iterate Vi1 =Y, U {y:V 2€EY¥,, ¥ o, such that (z, Y)Y E L’u(z—)} 5
- terminate when: Yy ==¥,;
let Xs=Y,, Es=E,\JBu(¥Y,—),
: denote ‘Fy==(Xg,H5) stap.
Thus Fgis.a graph of L(S;/G). Because the graph of L(S/G) is'realizable. Fs is a subgraph
of it. : : Y ‘

S

Besides, if §.is-given such that L(S/G)==La A , that is, the graph of L(S/G) is the maxi-
mal.realizable subgraph of ‘La, then L(S;/G)- got by this algorithim is the optimal solution which
min BM on the premise of max SM. _
8¢4  Increasing SM: without Increasing BM

~.Given Ssatv LGS/Q) S Ta, Lc(S/(')CLam, § with blocking. ' It is desired to find'S; on
the basis of S to max SM without increasiig BM. Let I, II,, II3, Hj denote L(®), La, Lam,
L(s/ G)f?»réspectivel'y; - Apparently, X4, & X3, Xy, To increase SM, the graph of 'L (S8,/G)
should be got by adding a subgraph of I7; to the graph I1,, moreover, it must be a‘realizable sub-
&aph of L (/G| Lam in order not to increase’ BM: Hence, we get the followirig algorithm
‘mputing the graph of L(S,;/G). | RN =
" GAlgorithin 4 let F=Hy U Hy= (XU X,, B U B = (Y, E)
©® v=y—x,,
Yo={2:Y «€U, 3 (z,0,9) € Bu(za—),yEV},
iterate Y, =Y, U fz.¥Y 2 €U=Y,, I (z,0,9) EBu(z— ),y C Y.},

“terminate when Y, =Y,, .
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if Y,=(’, then stop.
let Uy=Y,,
Fs=F—U,=(Xs,E5).
@ let Uy=Xsn— X4a—Uh,
compute max P(U;) within U—Uin terms of Fs,
let X¢=max P(Us,).
® let Xo;=XUX,, Fr={(X1)r,»
compute Ry, (%) ,
let Xg= Ry, (o) N X7,Fg=(Xgdp,,
let F=Fyg,
go to .
Thus, the graph F is the graph of L(8,/G), X[ X3a is its marked states. Besides there myy
_ exist an additional improve to IBM of H, because U is added to II,.
3.5 The Properties of the Algorithm

In the following, assume S to be the admissible solution of SCPB. It is easy to get the fol.
lowing results.

Proposition 8§ Assuming that S; be got by using algorithm 3 to reduce BM of S, and S, be
got by using algorithm 3 to reduce BM of §;, then L(8,/G)=L(8,/G).

Proposition 9 Assuming that 8, be got by using algorithm 4 to increase SM of S, and §, be
got by using algorithm 4 to increase SM of S,, then L(8;/3)=ELE(S8,/®).

Proposition 10 Assuming that S; be got by using algorithm 3 and algorithm 4 successively
to improve BM and SM of S in turn; and S, be got by using algorithm 3 to reduce BM of §,
then L(8S./G)=L(8,/®).

Proposition 11  Assuming that $; be got by using algorithm 4 and algorithm 3 successivel}
to improve SM and BM of § in turn; and S, be got by using algorithni 4 to ihcrease SM of Sy,
then L(8,/G)=L(S8,/G).

Proposition 12 Assuming that S, be got by using algorithm 4 and algorithm 3 successively
to improve SM and BM of § in turn; but S, be got by using algorithm 3 and algorithm 4 succes
sively to improve BM and SM of § in turn, then SM(S;)&=SM(S)).

Corollary Given S, and S, as proposition 12, then IBM (S, IBM (S;), OBM (S1)&
OBM(S)), SM(S)TSM(S).

In one word, given admissible solution §, in order to improve both SM and BM of S, it on-
ly requires that algorithm 3 and algorithm 4 be used one by one for once. If SM is i.t'nl'ﬂ""’ed
first, then more SM increasing can be got; if BM is improved first, then more BM reducing ¢2*
be got.

" 4 Conclusion

In this paper, a graph-based method dealing with SCPB is proposed, it is more mtmthe and

effective than the language-based method in[2l. The state set which induces outside blocking or i



No-3 A New Graph-Based Method Dealing with Blocking in Supervisory Control of Discrete Event Systems 205
sid" blocking can be found out clearly by using the method given in this paper. Besides, it is easy

0 point out the SM or BM improving direction from the graph description. Using the graph-based
111,}.thod also can delete the additional constraint La[) Lm(G) = Lam desired by the language-based

metl'lod‘
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