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Abstract; The problem of disturbance decoupling with stability (DDPS) has been paid quite g 1o
attention in recent years, and some significant results have been obtained. The main contribution of
this paper is that in more general situations where, for example, the number of inputs could be differ.
ent from that of outputs, the hyperbolic condition could be violated, and etc. , necessaty and sufficient
conditions are given so that the local DDPS problem for a kind of nonlinear opntrol systems can be
solved. As an application of the main results, a theorem is shown which simplifies the design of a feed-
back. control law for DDPS for a nonlinear 'control system obtained by cascading twov systems
together. '
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1 Introduction
In recent years a considerable amount of attention in the "field of nonlinear control
theory{1~61 has been paid to the problem of feedback stabilization of nonlinear systems and the re-
lated ones such as the disturbance decoupling problem with stability (DDPS for short) , due to
their practical sign.ificance and theoretical attraction. In [5] Wegen-Nijmeijer consider the local
DDPS for nonlinear systems with equal number of inputs and outputs and with a relative degree
at the equilibrium. They introduce the notion of maximal stable distribution 4,°. Under cerfain
hypotheses, they show that the problem of disturbance decoupling with exponential stability is lo-
cally solvable if and only if the disturbance channel of the nonlinear system is contained in 4
However, 4} is usually difficult to calculate and its existence strongly depends on the hypothesés
that the linearized counterpart of the nonlinear system is controllable and the zero dynamics of the
nonlinear system has a hyperbolic equilibrium. For example, let us consider the following SYS'
tem; ' . ’ o
{ &= f(z) + G@u + e(@w®), , .1
y = k(x), :
where
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T 1 0
z 1 0

f= irz s G = , e =
) + 23— %3 1 0
x1+x2—z§—z4 2 1

5=$1~ The linearized counterpart of the system is controllable but the zero dynamics of

-does not have a hyperbolic equilibrium.
show that the largest controlled invariant distribution A* in ker {dh} is

dh (=
e sy’ stem

1t is easy o
a a a a -3
Sp{ azs -a—z-;} . And both A1 —sp{ am } s Aa: —Sp{z155v_2+5z—3’ &1} y are stable con-

ol od invariant distributions in 4*. The A* itself is nota stable controiled invariant distribution.

i refore there is no largest stable controlled invariant distribution in 4*. However, later on we

wdl, show that DDPS is actually solvable for the system. ,

In this paper, we study the problem of disturbance decoupling with asymptotic stability for
onlinear control systems. As we understand; in the literature. the DDPS is generally proposed as
\DP plus exponential stability. However, in many cases, the DDPS can be considered solved if
. DDP is solved and the state trajectories of the system are bounded when the dl'sturbance is suf-

ently small. By the theory on total stabilityl”?, we can replace the requirement of exponential

bility by that of asymptotic stability for this purpose. Evidently , when only asymptotic stabili-
is asked for the DDPS, the notion of 4, becomes too strong. In this paper we solve the prob-
of local disturbance decouplmg ‘with asymptotic stability for a nonlinear control system by us-
the smallest locally controlled invariant and involutive dlstnbutlon which contains the distur-
’ce channel. We should point out that in [6] this approach is proposed independently to solve
problem of disturbance decouplmg with exponent1al stablity. As an application of our main
ults the case of cascadmg systems is studied in the paper. A result is given which simplifies
des1gn of a feedback law for DDPS for a nonlinear system obtamed by cascadmg two systems
ether.
2 Local DDPS for Nonlinear Control Systems
Let us consider the following system

{ &= f(2) + G@u® + e(z)w(t) , @D

y = h(),

Where zER*, « €R", yER', G(2) = (9:1(2) g2() *** ga (2)), dim (G (z) =m and ¥ (x) =
:("1(1) ho(z) +o+ h(2)), here “/” denotes the transpose.
" Suppose £(0)=0 and #(0)=0. For a smooth feecback control u= a(x) + p@)v (),

:1(2' 1) becomes.

o { = £@) + G@alz) + @) AW + e(@Dw®), 2.2
y = h(2). ‘ o '

The DDPS, as suggested in [4], is defined as follows: -
- Definition 2. 1 We say the disturbance decoupling problem with exponential stability
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(DDPES) for (2. 1) is solved locally if

1) DDP is locally solved by a pair (a,8) in (2. 2).

2) The equilibrium 0 of (2. 2) is exponentially stable when »(¢) and w(¢) are equal ¢, %
Yo. ,

As we have pointed out in the introduction, in many cases, one would consider the DDPS i
solved if the output is not affected by the disturbance and the. state trajectory of the SySten, i
bounded if the disturbance is well bounded. Namely, when v»(¢)=0, for (2.2):

V e>0,3 6,0, 60 such that it | 0 || <éi» |w(®) |<by, then || 5(2,20) I| <ey N

From the theory on total stability(”], we know that if the equilibrium of (2. 2) is asympqyj.
cally stable when v(#) and w(?) is set to zero, then, the bounded state stability is guaranteeq.
" Therefore, we give the following extended definition for DDPS.;

Definition 2. 2 We say the dlsturbance decoupling problem with asymptotic stabxhty '
(DDPAS) for (2. 1) is solved locally if :

1) DDP is locally solved by a pair (a,p) in (2. 2). ,

2) The equilibrium 0 of (2. 2) is asymptotically stable when »(¢) and w(¢) are equal to %
Yo. ' S :

For the sake of simplicity , we will assume that in (2. 1) the mappings f(z), G(x), h(;) '
and e(z) are smooth and the noise w () is bounded and measurable in a nenghborhood of 0
Therefore, the differential equation (2. 2) is always 1ntegrable. ’

In the present approaches of solving DDP, the maximal involutive’ controlled invariant dis-
tribution in the ker{dA(z)}, denoted by 4*, has played an important role. And 4* exists under
mild conditions (see e.g. [1]). Throughout this paper, we assume that for (2.1) A* exist and
be nonsingular. Then, there exists a local coordmate system around the equxhbnum point such
that after a regular state feedback, (2. 1) is locally diffeomorphic to the following system in the
new coordinates,

= fi(z) + Gi(z)u + 81(1’)0)9 )
2y = fol@y,%2) + Go(zy522)u + ey(2)w, (2.3
y =Vh(x1).
In these coordinates the maximal involutive controlled invariant distribution in ker{d_h} is l'eP“'
sented by 4* =sp{ a—i—z} .
- For (2.1) DDP is locally solvable if

H1 e(@z)EA*, i.e. e,(z)=0in (2. 3). : :

»dn a local chart of the origin, regular state feedback and coordinates transformations fOfm'a,
transformation group. Therefore, when we discuss the DDPS of (2. 1), without loss of general‘f
ty, we can assume that system (2. 1) is already in the form of (2. 3).

i
If z, is a stabilizable mode of (2. 3), i. e.  the subsystem #; = f,(2,) + G (z;)u can be st?
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Ne:
J o bY a state feedback u=a(z,). Then, as a classical result, we know,
proposition 2. 1 Suppose H1 holds and z, is a stabilizable mode, if additionally the noise-
. dynamics on the leaf of 4% through 0 characterized by
= £2(0, z2) 2.4
asymptotlcally stable; then DDPAS is solvable. '

fo

In this case, 4* itself is the maximum stable distribution contained in 4*.
The hypothesis in Proposition 2. 1 is obviously very strong. In this paper, we will solve the
» uch subtler case where (2. 4) is not necessarily stable by utilizing the smallest stable distribution
R contained in 4* which contains e(z).
Let us first introduce some preliminary results which will be needed later. Set w(¢)=0 and
rewrite system (2. 3) as follows; _
{ i = f(z) + G(@)u, 2.5
y = h(z)..
We adopt the notion friend from the linear systems theory
Definition 2.3 Let 4 be an involutive controlled invariant distribution or (f,6)-invariant
distribution for (2. 5) and denote F(4) the set of all regular state feedback (a, B) such that the
distribution 4 is invariant under f-+Ga and GB. An element of F(4) is called a friend of A.
: Lemma 2.2 If 4,, A, are two nonsingular involutive (f,@)-invariant distributions with
 the property that 4,C4; and 4;()sp{G(z)} =0, then F(4) CF(4). ’
~ Proof Let (a,8) € F(4;), under a proper coordinate system the closed loop system has the
';f form:
{ i = fi(z) + Gi(z)v, 2.6
= f3(2,22) + Go(z,22)0,

= F)
Wwhere Az==sp{ -a—m—} As A4/C 4, let A1=sp{ —a—} , then (2. 6) can be rewritten in the following

3:1:22

& = fi(z) + Gi(z)v,

i = fn(@1,22) + Gn (21,20, Q.7
. iz = fo2(%1,%2) + Gu(z1,22)0,

Where 7= (z};,45;). As 4, is (f, G)-invariant, there exists (a*, *) such that

i( F1@) + Gi(z)a* (21,22) )_ 0 _;_)_( Gy (1) B* (21522) )_

B\ f(21,3) + On(@rz)a @y5)) 32\Gy (2,2 * (31,22 B

Becauge 4:sp{G(z)} =0, Gy(z,) has full column rank. It is easy to verify that é—j—a’ (@1522)
22

= d
0 ang 5—pB* (21,23) =0. Therefore, —B—GZI (z1,z2) =0, and then —a—-fm (z1,22)=0. It im-
, iz, 9Tz 9z

Mies that (4, gy € F(4)). Q.E.D.
Lemma 9. 311 Let z, be an equilibrium point of the vector field f(z). Suppose that 4 is a

lopg ) .
Obsingular and involutive controlied invariant distribution and that
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4 N sp{GGx)} =0, dim(G) = m.
Let (a, ) G=1,2) EF(4) with ay(z,) =az(z.) =0. Let M, be the maximal integral SUbingy,
foid A which contains z,. Then on M,
an(z) = a(x).
From the previous lemmas, we have seen the importance of the condition AN sp{G(;,;)} <q,
In this section, we assume for system (2. 1)
H? 4* Nsp{G@&)}=0.

Now we can summarizing the preceding lemmas into the following proposition ;

Proposition 2. 4 Suppose H2 holds. Then for system (2. 5),. the following statementg At
true:

1) Each regular involutive controlled invariant distribution 4 contained in A* is also invar.
ant under f-+Ga* and GB* for each (a*, B*YEF(4");

2) If AC4* and 4 is controlled invariant distribution, then, for all regular state feedbacy
(a,p) E F(4) with a(z.)=0, the dynamics of the flow of the vector f + Ga on the integral syp.
manifold of 4 through the equilibrium pdint has the same stability property.

Now we are ready to discuss the DDPS in a fairly general setting. Let us denote (4,), the
smallest controlled invariant distribution containing sp{e} and 4, the largest local controllabilit)}
distribution in ker {dh} for (2. 1). Since we assume that for system (2. 1) 4* is nonsingular and
involutive and that H1 and H2 hold, (4,)« is contained in 4* and 4,=0. Because (2. 1) is dif- .
feomorphic to (2. 3) after an (a, ) transformation when (a,8) € F(4*), then by Lemma 2. k2 1

(4. = (f,G, e/sple}) i
the smallest distribution invariant under vector fields f, G, e of system (2. 3) and containi’r;’g‘ ik
sp{e}. '

In this paper, we pose the regularity assumption on this distribution, i.e., itis nonsingula}‘

and involutive. The algorithm for obtaining the distribution (f,G, efsp{e}) can be found xn ‘

. i . r
Now we state the main result of this section.
Theorem 2.5 For sYstem (2. 1); assume that H1 and H2 hold. Then DDPAS is solvable

if and only if |

1) There exists (a*,8*) € F((4,).) such that the dynamics of the vector flow &1 o
the leaf of (4,). through the zero point is asymptotically stable;
2) The dynamics of (2. 1) modulo (4,), is asymptotically stabilizable. 6& .
afe®

Proof Under the hypotheses, (2. 1) is diffeomorphic to the following system after

back transformation (a,8) € F((4.)«)
& = f1(z1,%21) + G1(21,221)%,
iy = fa(@1,22) + Gala s 1)U s
i iy = f2(@1,201,%22) + Gz (215221, %22)8 + en(z)w,

l y = h(x),
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.o @3 _ , 3
gpere 4" =sp{>~, o) 20d (4).=(f,6, e/SP{e}>——sp(aI22}-

1) means that

Zgp = f22(0,5 0y 2p) 2.9
s asymptotically stable. Note that by Proposition 2. 4, the stability of this dynamlcs does not
change with different choices of (a,8) in F((4,).).

2) means that there exists a feedback control u=a(z,2y) such that
= fi(@1,25) + G ()29 0 (2157)

‘ 2.10
in = fa(z1,22) + Gn(z1,22) a1 (21,25)
js asymptotically stable. ’
The sufficiency of this theorem is a direct consequence of the following lemma
Lemma 2. 68  For the following system
= f1 (%), : (2. 11a)
= f2(21,22). S (2.11b)

" The equilibrium 0 is asymptotically stable if and only if the equilibrium 0 of (2. 11a) is asymp-
totically stable and when set z,=0, the equilibrium 0 of (2. 11b) is asymtotically stable.

On the other hand, if there exists a state feedback (a*, %) which ‘solves DDPAS of (2.
1), then e(z) € 4* by H1. Thus, (4.).C4*. By Proposition 2. 4 (a*,8*) EF((4,).) since
(4« =(f>G, e/spe}). Therefdre, 1) and 2) are true according to Proposition 2. 4 and Lem-
ma26.  Q.E.D.

Now we consider the example shown by (1. 1) again. For this system

(4). = Sp{%}.

It is easy to verify that all conditions of Theorem 2. 5 are satisfied. Thus, DDPS is solvable for
U = 31:'1 + T2 + v

- DDPAS for Cascading Nonlinear Control Systems
In this section, we consider the DDPAS problem for a nonlinear systermn obtained by cascad-
'8 the following two systems together .
{51 = f(&) + g(&Du,
y=h&), &HER, yER", wER",
, §e=F(%,v) +e(@Dw(®), &ER', vER" wE R (3.2)
By Cascading them, we obtain .

@G. D

‘fl = f(§1) -+ ‘9@1)1‘,
1 & = F(&,y) + e(EDw(t), - (3.3)
y = k(§1) s

Whe, :
T® We asqume the mappings f, g, 4, F and e are smooth and w(¢) is bounded and measur-

able,
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—
Recently, a great deal of attention has been paid to this kind composite\ systems, for €Xan,
ple, [3,4,9].

Obviously, for system (3. 3), the DDP is already solved. Our emphasis should be in fing

ing a feedback control law which stabilizes ,»(3' _3) while the outputs remain decoupled fron, the
disturbance. In this section, we will develop a method which enables us to solve the DDPAg for
(3. 3) by mainly studying (3. 2).

We need the following assumptions:

H3 (3. 1) has relative degree (7, *=*, 7,) at zero and is minimum phase. And sp{ a,
*s, ga} is involutive.

H4 For all fixed v€ER™ in (3. 2),

(4)+ = (F(&, v), e/sp{e})

is nonsingular and involutive and remains the same for all ».

These two assumptions are about the structure of the system. Accordingly, we define

Definition 3.1 v(&;) is a friend of (4). (v(&) € F((4).)) if [F(&2s v(52)), (4),]
€. -
Before we present our result, we also need to state the following hypothesis ;
H5 (3. 3) is weakly stabilizable, i.e. , there exists u=@ &+ @, such that

WO L e 0@
3‘51 C -
aF 0, K(0))  AF(O, R(0))
3, 3

the closed left half plane. Obviously, this condition is also necessary for the solution of
DDPAS. '
Now we state our main result of this section
Theorem 3.1 Suppose H3~HS5 hold. Then, for system (3. 3), the DDPAS is solvable if
there exits »* (&) € F((4,).) which sp{dv, (z)} € (4,)%, such that when w(t) is set to zero,
the flow on a center mainfold of the close loop system (3. 2) is asymptotically stable and the dy-
namics on the leaf of (4,), through zero is asymptotically stable.

Proof After a coordinates change, we can write the closed loop system (3. 2) as follows:

x At 0 0) (= Q1 (xy,22,23) 91] .
=10 A 0||z|+ |Q@i,z2,23) |+ |ez w(®), 3.9
z3 0 0 A% |zs Q3 (21522523 eaJ
where c(AH CCt, c(HCC, oA )C C‘..
On a center manifold z; =@, (x3) , z2=@;(z3), the flow
| i = 4% + (9@ ,9:(0) D 3.9

is asymptotically stable. Note that the system itself may not be stable due to the possible existenc®
of A*. )
"Since the flow on the leaf of (4,). through zero is asymptotically stable, as a nec el



On Local Disturbance Decoupling with Asymptotic Stability for Nonlinear Systems

381

oOndition’
' a 2
(As)'» - Sp{a_zz', 'a';;}.
; e we can rewrite (3. 4) as;

& = A% 2; + Q1(1,%21,231)
iz = ATy + Qu(215%215%31) s
g3 = Ahzs + Q1 (21,221,%31) »
v fézz = An¥sn + Qu(z1,%2,23) + et (x)w(®),

#3p = Abzsr + Qa2(z1,22,23) + ex(xdw (@),

: a a
where (A,).=SP{$22, 5;3—2} and

Zyp = Ap¥y + Q22(0,222,232),
d3n = Abzss + @32(0,222,%32)

(3.6)

is asymptotically stable. Since (3. 6) has a triangular structure, there must exists a center mani-

© fold in-the form

2 = g (231), 2 = ‘7’21(131)» Tpp = Pp2(@315%32) 0

For system (3. 1), if H3 holds, it is well known[®] that after a feedback transformation, it

s locally diffeomorphic to the following system ;
. 2=f0(z9 Ts % 77;)9
")1 = 72y

@
.

")! = f,(2, My **5 ) + u,

Yy = M.

3.7

”';Without loss of génerality, we assume r; =+ ==7,=7 for the sake of simplicity. And by the hy-

_ pothesis H3, the zero dynamics

, z= fo(z, 0)
_ is asymptotically stable.
Now let

{ m=mn — r(2),

;7‘= 7 — 7(Zy My vy Pim1)s 1 == 2,000,7,

’ ) 3r.-~ 3",'- .
Where 7, (z2) =v* (&) =5 (@), mit1(z, My ne—1)=—a;F(z,m)+a—”n, t=1,e,r—1.

By the assumptions in Theorem 3. 1, sp{dr;(z)} € (4)+. And by Lemma 1. 6. 7in [1],

(40)1': is also invariant under F. Therefore, we can rewrite (3. 3) as follows
z=folz, m + r1(@), =, m + 7.(z,),

N = %2

ﬂv = fr(zt 51 + Tl(z)9 *oy 5r + T,(I,ﬁ)) + R(Z,;)) + Uy
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& = Atz + Qi(@1,2a,%3) + Py (122152315, 1) T » (3. 8)
in = Anzn + Qu(yr@arzs) + Py (2152515 %515 T T »
g = Ahzs + Qa(@1sT21570) + Pai(21,2215%5 2y
dp = Aty + Qu(21,22,73) + Py(21, 221533151 + er(@w(®,
i = Az + Qu(21,72,83) + Ps2(21, 221, %515 10)M + ez (2)w ().
By H5, there exists u=Km+ K, such that ' -

A 0
o K, K,|CC,
(P,(0)0--0) At
where
0 I - 0
A= |t ¥
0 0 1

We claim that u=K1;71+K2(x1—¢1(z3,)j——f,—R(x,?;)—}—v solves the DDPAS for. (3. g).‘
Indeed, it can be shown that S ) v
: 7 = 0, =z =epn) n= ¢21(z31)

is a center manifold for the closed loop system (3. 8) modulo (4,) «- And the flow on the center
manifold is governed by (3.5). Therefore, the dynamics of (3. 8) modulo (4) » is asymptoti-
cally stable. By Theorein 2.5, the DDPAS is solved.  Q.E.D. '
4 Further Discussions

In our results in the preceding sections, the hypothesis that A* (sp{G(z)} =0 plays a very
important role. If this hypothesis does not necessarily hold , even though all other hypotheses still
hold, the problem becomes much more complicated. In this case, after a proper regular input

transformation , i.e. let u= g(z)v with detB(z)7%0, (2.3) locally diffeomorphic to the follow-

ing system: .
i = f1(z) + Gi(z)v,
Ey = fZl(xI)mZL) + Gh (z 22015 ) “ )
i Iy = Fa2(@1 522 ,%22) + G4 (21 5231, 222)01 + G (21,321, 222) 02 + exw,
| v =4,
. 3 3
where A4* =sp 525—2} , (4o)« =sp{ E} , and vy=m<m.

The complexity is reflected in the fact that in this case, conditions 1) and 2) in Theorem
2. 5 is no longer necessary, because the largest local controllability distritution in {kerdh} 4%
nonzero. We note that the DDPES problem in this case has been discussed in [6]. Greater efforts

are needed to fully understand the problem in this general setting.
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