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Abstract; In this paper a new mixed method of reduction——matrix Padé type approximation
method is introduced. This method chooses ah arbitrary matrix polynomial as denominator of a reduced
model, then determines numerator of the reduced model by matrix Padé type approximation. The ex-
ample given in this paper shows that the reduced model derived from our method is a good approxima-
tion to the original system. The computational procedure of this method is very concise.
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] Introduction
The exact analysis of most systems of higher order is both tedious and costly. Thus the prob-
}lem of reducing a higher order system to its lower order models is considered important in analy-

, systhesis and simulation of practical systems such as the aircraft systems and the chemical
ocessing control systems. Rational approximation is considered an important approach in linear
ultivariable systems. In fact, the problem of model reduction: mﬁy be stated as follows: Given
me information about a system with a rational transfer function (of high order), find a system
ith a lower order rational transfer function that in some sense approximates the original
system. .

Lots of methods of reductionl?"8] are based on the retention of the dominant poles of the sys-
m in the reduced model. The most important feature of these methods is that the reduced model
always stable (unstable) if the original system is stable (unstable). However, most of these
ethods assume that the system is described in state- vector form, and we must compute the
menvaluw and eigenvectors of the high order state matrix. Thus these methods are computation-
¥ very cumbersome.

Another popular approach to the reduction problem is based on partial sequences of Markov
Parameters and time-moments, continued-fractions and Padé approximation[!:4-5], Although these
tional approximation methods play an important part and have been widely used in many do-
Maing, :they have a very serious disadvantage ; the reduced model may be unstable (stable) even

the original system is stable (unstable).
Many mixed mehtods, which retain the advantages of both the stability-equation and the
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Padé approximation mehtod, have been put forward (see [6,11,12,13]). In this Paper,
first introduce the new concept; matrix Padé type: approxxmatxon, based on which we de"elop
method that also combmes the desirable features of the Padé approxnnatlon method and the
methods. Iliustrative example will show that this is a convenient ‘and powerful reduct.
method.

92 Matrix Padé Type Approxunaﬁon (MPI‘A) :
We first introduce the definition of matrix Padé type approximation (MPTA)

Let f(z) be ngen by a power series with matrix coefficients

oo

f(z) Ec»z", o € Cm S , Q.

=0
Let v(z) be an arbxtrary quasn—momc polynomial of degree k

o) = Eb,z . b€ C™, b isnonsingular.. @2
Set -
w(z) = ag + aiz + = + @@ , (2.3)
where e = b—ilcibi-l-'ﬁb i=0,1,,k— 1. _ 2. 4)
Define Coe w(z) zoz""lw(z"‘l), 5(z) = 2v(z7™V),
then L
f(2) — w(Z)[v(Z)] 1= 0(2), z—0, ; | - Q. 5)‘

we call B(z)[5(z)]™ lthe *(k—1/%) right-handed matrix ‘Padé type approximant (RMPTA) of
f€z).
- Similarly, lf we replace (2. 4) by

—i—1 i :
E bi+}+lc.ﬂ § = 0 1 s °°° ,k —1 ’ - (2' 6)
. - §=0
we have ; ’
.f(Z) - [v(Z)]“lw(Z) = 0(2"), z— 0. @.n

We call [v(z)]—lw(z) the ‘(k— 1 /k) left- handed matrix Padé type approx1mant (LMPTA) of
f(2).
In' general, ’(k l/k) RMPTA does not equal ‘(k 1/k) LMPTA, which can be mustrated
by the following example.
l - Example ‘I

| 10\ .
v f(Z)= ( 1 0>+012+0222+"°, Vcieczxzﬂ;:' 1,2,

| (1 z) (o 1)
Choose v(z) = z— ,
. o . 0 1 0 0

1 1 0
then "(0/Ds(2) = ( i ); HO/Dg(2) = ( +e )
) 1 =z 1 0

Obviously ,
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'(0/1),«(2) #1(0/1)5(2).
Asin the scalar case, we can obtain many algebraic propertxes and oonvergent results of ma-
Padé type approximant. Here we do not dlSCllSS them in detail. Interested reader may refer to
k[zl
Reductions of Multivariable Systerm
Consider a multivariable system expressed by
Y(s) = HHU(s), G. D
ahere H(s) is the transfer function matrix of the system, which is writen in the form
H(s) = N([D( ]!
= [4o + Ais + === + 4 & 1][By + Bis + += + B.s’]—‘ 3.2
A4G= 0,1, —1) € cm, Bi(i = 0,1, ,n) € C™™
jNo w we use right- -handed matrix Padé type approximation to produce the reduced models Let
| v(e) = S, b € C, b is nonsingular (3.3

¥ =
pe an arbitrarily given polynomial matrix, and take the matrix polynomial 5(s) as the denomina-

‘:;tor of the reduced model. Then compute the numerator of the reduced model by the matrix Padé
type approximation. The computational procedure for RMPTA is summarized as follows
Step 1 Expand H(s) into a power series

-3

H() = Yo¢, &€ C 3.4

=0

= , (3.5)
¢-1 =0, and B; = 0 for all ¢ > =.
Step 2 Use (2 3) (2.6), we can get an "(I— 1/1) MPTA of H(s) The reduced model
iis given by ' oo

With { ¢ = (A Ec; )—))BO ’

H(s) =" — 1/Dg. , (3. 6)
The procedure for LMPTA can be obtained similarly. _ k
. Remark Onlyina neighborhood of the original point s= 0 Padé type approx1mat10n H,(s)
;(l=0’1’ «+) is a good approximation of H(s), because the approximant H,(s) is obtained by
letting the first I terms of the Taylor expansion series of H,(s) at s=0 be the same as those of
H(s), this can be seen from (2. 5) or (2.7). However, if s is large, the error H(s)~H,(s)
;Inay be large in magnitude. | ‘
~ Example 2

Consider the transfer function matrix

H(s) =(2s3 + 51s2 — 186s — 960 s® 4 36s% + 128s — 252)

383 — 452 — 29s T 283+ 13s%2 — 59s — 42
— 35t — 146‘3 — 119s% — 812s — 960 4s* + 31s® — 8s® — 239s — 252)_1
— st — 4s® — 73s* — 390s st — 8 — 81s2 — 181s — 42

(3- 7)
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\

From (3. 5) the c¢js can be evaluated. The first ¢;8 are

( 1.0 0. 0)
¢y = . Py
0.0 1.0

, (-—- 0.6520834 — 4.825595 )
c = ’

A

— 0.3760417 — 0, 6485119 Q.3
2.334868 0. 5096516
2= (9. 449852 — 0. 361371)'
Select
s+1 3s+4+2
n(e) = (— 2s 1 )’ @.9)
— 242 — 155+ 1 4+ Ts+3
ve() = ( — 10s — 22— s+ 1)’ (. 10)
— 1926 — 124s? + s — 3 — 366° — 295 + 3s + 4
"’(8)'—'( — 7824 s— 1 --,633—25s2—8s+1)’ (.11
we get the reduced models )
N -1
Hy() =(_12 z )(Sj; zsj 3) : @3.12)
(o. 65000155 — 24.0  14. 042865 -+ 4. 0 )
Hz(s) ==
. — 0.9749994s  — 1.207143s — 2.0
(2 — 155 — 24 38+ Ts + 4\~! ,
( —10s ¢ "sz—s——z) ’ (%’.13)
Hye) < (9. 965" + 1. 20 — 192.0 1.7959s* — 23. 4286s — 36. 0)
— 0.36s2— 5.85  2.93877s* — 7. 57143s — 6.0
. (— 3% + s? — 1245 — 192 4s* + 35 — 29s — 36)‘1“ 314
— ¥+ &£ — T8s s — 8% — 255 — 6

respectively. The unit-step response of two components (, and y;) of the output ¥ are shown in
Fig. 1 and Fig. 2. ‘ '

If some poles of H (s) are known, it

)

can be meaningful to utilize this informa- I
tion. In the above example, the poles of
H(s) are -1, —2, s, —8, the denom-
inator polynomial #,(s), ,(s) and #3(s)
have poles —2, —3; —1, —2, —3,
—8and —1, —2, —3, —4, —6, —8
respectively. v

These figures indicate that the results
are acceptable,’ that is to say, the reduced
. 2

models give good approximation to the orig- Fig. 1 Unit-step responses of the first output of exampl®
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2(
The main advantages of this "o
Hy(s)
Hi(9)
1) The computational procedure is b
2) If the polynomial » (s) is chosen ,
qich that all its zeros are in the left com- 0.0 }}’ (18.)0 2.0 3.0 1.0 t
H(s)

- jex plane then the reduced model is sta-
"ble Especially, if the original system is Fig. 2 Unit-step responses of the second output of example 2
e, and D;(s) is a divisor of D(#), by choosing »(s) =D,(s), We can obtain a stable reduced

gtabl
model which retains some eigenvalues (may not be dominant ones) of the original system. This is

gn important feature of matrix Padé type approximation method.

3) By properly choosing v(s), the reduced model may retain a number of large magnitude
poles of the system in the reduced model. This point has been emphasized by Shamash in [12].

{
1t should be pointed out that if we choose v(s) = D yse1(s—s) I (I is the mX m identity
matrix) , Where si(k=1,++,1) are dominant eigenvalues of H(s), then our method is equivalent
to the method proposed in [12].
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