Sufficient Condition for Stability of Interval Matrices

MEI Zhengyang

(Department of Mathematics, Xianning Teachers College Hubei Xianning, 437005, PRC)

Abstract: In this paper, some sufficient conditions are presented for the stability of a real matrix whose elements are not known precisely. These conditions have improved the results of symmetric interval matrices.

Key words; interval matrix; Flurwitz stability; Schur stability; strictly diagonally dominant matrix

1 Introduction

Suppose the linear dynamical system described by the equation

$$x'(t) = Ax(t), \quad x(t_0) = x_0.$$
 (1)

Where A is a real matrix with dimensions $n \times n$. Because of rounding error, we only know the ends of the interval within which the elements of the matrix are confined. Let

$$A = \{a_{ij}\}, P = \{p_{ij}\}, Q = \{q_{ij}\}, (i, j = 1, 2, 3, \dots, n)$$

are real matrices with dimensions $n \times n$. Denote $N[P, Q] = \{A = \{a_{ij}\} \in \mathbb{R}^{n \times n}: P \leqslant A \leqslant Q, p_{ij} \leqslant a_{ij} \leqslant q_{ij}, i, j = 1, 2, \dots, n\}$. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the eigenvalues of matrix $A \in N[P, Q]$. For the continuous time-invariant case, the set N[P, Q] is said to be Hurwitz if and only if $\operatorname{Re} \lambda_i < 0$ $(i=1,2,\dots,n)$. For the time-invariant discrete time system, the set N[P, Q] is said to be Schur if and only if $|\lambda_i| < 1$. $(i=1,2,\dots,n)$.

Bialas^[1] has shown that the family of interval matrices is Hurwitz if and only if all its vertex matrices are Hurwitz. But Barmish and Hollot^[2] have shown that the result of Bialas^[1] is incorrect; Xu, D. Y. ^[7] has obtained the simple criteria for Hurwitz of interval matrices; Mori and Kokame^[9,11] have shown that interval matrices and interval polynomials are Hurwitz in some certain conditions; Petkovski^[3] has attempted to improve the bounds of interval matrices to keep it Hurwitz, however his result has also been shown to be incorrect by Buslowiz^[5]; Necessary and sufficient condition for Hurwitz and Schur have been obtained by Soh^[6], but these results are based on symmetric matrices.

In this paper, we present several sufficient conditions for the stability of real interval matrix.

² Hurwitz Stability

Mori and Kokame^[9] and Soh^[6] have obtained the result of symmetric interval matrices.

Now we consider the case of general interval matrices.

Suppose $A = \{a_{ij}\}$ is a $n \times n$ real matrix. We have $A = (A + A^T)/2 + (A - A^T)/2$. Obviously $(A + A^T)/2$ is a symmetric matrix. Denote $B = (A + A^T)/2$. Let $\max(\lambda(B)) = \beta$, $\min(\lambda(B)) = \alpha$, then $\alpha \le \text{Re}(\lambda(A)) \le \beta$ (see [8]).

Lemma 1 Let A be a real matrix with dimension $n \times n$. Denote $B = (A + A^T)/2$. Then A is Hurwitz if B is Hurwitz.

Lemma 2 Let A_1 and A_2 be two real matrices with dimensions $n \times n$. Denote $B_1 = (A_1 + A_1^T)/2$, $B_2 = (A_2 + A_2^T)/2$. Then $A = (1-r)A_1 + r A_2$ is Hurwitz for all $r \in [0, 1]$, if B_1 and B_2 is Hurwitz.

Proof We have the fact that (Lancaster and Tismenetsky^[10]) a symmetric Hurwitz matrix is negative-definite and vice versa. Because B_1 , B_2 and $(A+A^T)/2$ are symmetric matrices, it will suffice to show $(A+A^T)/2$ is negative-definite for all $r \in [0, 1]$. We have

$$(A + A^{T})/2 = (1 - r)(A_1 + A_1^{T})/2 + r(A_2 + A_2^{T})/2 = (1 - r)B_1 + rB_2$$

Here B_1 and B_2 are Hurwitz. So $x^{T}((A + A^{T})/2)x = (1 - r)x^{T}B_1x + rx^{T}B_2x < 0$ for all $0 \neq x \in \mathbb{R}^{s \times 1}$. $(A + A^{T})/2$ is Hurwitz, then A is Hurwitz.

For the following polytope of $n \times n$ real matrices

$$R = \sum_{i=1}^{m} r_i A_i, \quad \sum_{i=1}^{m} r_i = 1, \quad r_i \geqslant 0, \quad m = m(n).$$
 (2)

Theorem 1 The polytope of matrices R is Hurwitz if matrices B_i are Hurwitz. $(i=1,2,\cdots,m)$, where $B_i=(A_i+A_i^T)/2$, $(i=1,2,\cdots,m)$.

Proof From the condition:

$$R_* = (R + R^{\mathrm{T}})/2 = \sum_{i=1}^{m} r_i (A_i + A_i^{\mathrm{T}})/2 = \sum_{i=1}^{m} r_i B_i.$$
 (3)

Soh^[6] has shown that the polytope of symmetric matrices R_* is Hurwitz if and only if the vertex matrices B_i are Hurwitz. From Lemma 1, R is Hurwitz.

Suppose $V^*[P, Q] = \{T = \{t_{ij}\} \in \mathbb{R}^{n \times n}: t_{ij} = (p_{ij} + p_{ji})/2 \text{ or } (q_{ij} + q_{ji})/2 \text{ for any } i, j = 1, 2, \dots, n\}$. There are 2^{n^2-1} numbers of T in $V^*[P, Q]$.

Theorem 2 If $V^*[P,Q]$ is Hurwitz, then N[P, Q] is Hurwitz.

Proof Because $P \leq A \leq Q$ for all $A \in N[P,Q]$

$$(P + P^{\mathrm{T}})/2 \leqslant (A + A^{\mathrm{T}})/2 \leqslant (Q + Q^{\mathrm{T}})/2.$$

Also^[6] there exist constant numbers $r_i \ge 0$, $\sum_{i=1}^{m} r_i = 1$, such that

$$(A + A^{T})/2 = \sum_{i=1}^{m} r_{i}T_{i}, \quad T_{i} \in V^{*}[P, Q], \ m = 2^{n^{2}-1}.$$

It followed from Theorem 1:

 $(A+A^{T})/2$ is Hurwitz, A is Hurwitz. So N[P, Q] is Hurwitz.

3 Hurwitz Stability of Interval Diagonally Dominant Matrices

Let $A = \{a_{ij}\}$ be a real matrix with dimension $n \times n$. If $|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$ for each $1 \le i \le n$, we

that A is a strictly diagonally dominant matrix, denoted by $A \in D$.

Lemma $3^{[4]}$ Let $A \in D$, $a_i > 0$ $(i=1,2,\dots,n)$, then $\det A \neq 0$, $\operatorname{Re} \lambda_i A > 0$, $(i=1,\dots,n)$.

Theorem 3 Let $t_{ii} < 0$, $T \in D$ for all $T \in V^*[P, Q]$, then N[P, Q] is Hurwitz.

Proof $T \in V^*[P, Q]$, $T \in D$, therefore $V^*[P, Q]$ is Hurwitz. From Theorem 2, N[P, Q] is Hurwitz.

Remark 1 This theorem has improved the corresponding results of Xu, D. Y. [7].

Remark 2 Soh^[6] has shown that a family of symmetric interval matrices is Schur if and only if the vertex matrices are Schur. For the case of general interval matrices. We have result: the polytope of matrices R is Schur for all $r \in [0, 1]$, if each B_i is Schur. Where

$$B_i = (A_i + A_i^T)/2, \quad (i = 1, 2, \dots, n)$$

Example

In this section we have a simple example.

Let

$$p = \begin{bmatrix} -2.1 & 1.4 \\ 0.6 & -4.0 \end{bmatrix}, \quad Q = \begin{bmatrix} -1.5 & 2.0 \\ 0.8 & -3.5 \end{bmatrix},$$

$$N[P, Q] = \{A | A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, -2.1 \leqslant a_{11} \leqslant -1.5,$$

$$1.4 \leqslant a_{12} \leqslant 2.0, \ 0.6 \leqslant a_{21} \leqslant 0.8, -4.0 \leqslant a_{22} \leqslant -3.5 \},$$

$$(P + P^{T})/2 = \begin{bmatrix} -2.1 & 1.0 \\ 1.0 & -4.0 \end{bmatrix}, \quad (Q + Q^{T})/2 = \begin{bmatrix} -1.5 & 1.4 \\ 1.4 & -3.5 \end{bmatrix},$$

$$V^{*}[P, Q] = \{T_{i}: i = 1, 2, \dots, 8\}, \quad \text{where } m = 2^{n^{2}-1} = 2^{2^{2}-1} = 8.$$

$$T_1 = \begin{bmatrix} -2.1 & 1.0 \\ 1.0 & -4.0 \end{bmatrix}, \quad T_2 = \begin{bmatrix} -1.5 & 1.0 \\ 1.0 & -4.0 \end{bmatrix}, \quad T_3 = \begin{bmatrix} -2.1 & 1.4 \\ 1.4 & -4.0 \end{bmatrix},$$

$$T_4 = \begin{bmatrix} -2.1 & 1.0 \\ 1.0 & -3.5 \end{bmatrix}, \quad T_5 = \begin{bmatrix} -2.1 & 1.4 \\ 1.4 & -3.5 \end{bmatrix}, \quad T_6 = \begin{bmatrix} -1.5 & 1.4 \\ 1.4 & -4.0 \end{bmatrix},$$

$$T_7 = \begin{bmatrix} -1.5 & 1.0 \\ 1.0 & -3.5 \end{bmatrix}, T_8 = \begin{bmatrix} -1.5 & 1.4 \\ 1.4 & -3.5 \end{bmatrix}.$$

1) $\forall A \in N[P, Q]$, we have

$$(A + A^{T})/2 = \sum_{i=1}^{m} r_{i}T_{i}, \quad \sum_{i=1}^{m} r_{i} = 1, \quad r_{i} \ge 0, \quad (i = 1, 2, \dots, m).$$

For example

$$A = \begin{bmatrix} -1.8 & 1.7 \\ 0.7 & -3.6 \end{bmatrix} \in N[P, Q], \quad (A + A^{T})/2 = \begin{bmatrix} -1.8 & 1.2 \\ 1.2 & -3.6 \end{bmatrix} = \sum_{i=1}^{8} r_{i}T_{i},$$

Hence

$$r_1 = 0.1, \quad r_2 = 0.1, \quad r_3 = 0, \quad r_4 = 0.3,$$

$$r_5 = 0.1$$
, $r_6 = 0$, $r_7 = 0$, $r_8 = 0.4$,

$$r_1 = 0$$
, $r_2 = 0.2$, $r_3 = 0$, $r_4 = 0.3$,

$$r_5 = 0.2, \quad r_6 = 0, \quad r_7 = 0, \quad r_8 = 0.3,$$

or another.

Because

Because
$$\begin{bmatrix}
-2.1 & -1.5 & -2.1 & -2.1 & -2.1 & -1.5 & -1.5 & -1.5 \\
1.0 & 1.0 & 1.4 & 1.0 & 1.4 & 1.0 & 1.4 \\
-4.0 & -4.0 & -4.0 & -3.5 & -3.5 & -4.0 & -3.5 & -3.5 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
r_1 \\
r_2 \\
\vdots \\
r_s
\end{bmatrix} =
\begin{bmatrix}
-1.8 \\
1.2 \\
-3.6 \\
1
\end{bmatrix}.$$

2) $V^* \lceil P, Q \rceil$ is Hurwitz, Because T_1 is Hurwitz $(i = 1, 2, \dots, 8)$, so $N \lceil P, Q \rceil$ is Hurwitz.

For example

$$A = \begin{bmatrix} -1.8 & 1.7 \\ 0.7 & -3.6 \end{bmatrix}, \quad \det(\lambda I - A) = |\lambda I - A| = 0, \quad \text{i. e. } \lambda^2 + 5.4\lambda + 5.29 = 0,$$

 $Re\lambda(A) < 0$, and A is Hurwitz.

The auther thanks Professor Jiong Ruan of Fudan University for his Acknowledgement guiding.

References

- [1] Bialas, S.. A Necessary and Sufficient Condition for the Stability of Interval Matrices. Int. J. Control, 1983, 37,717-722
- [2] Barmish, B. R. and Hollot, C. V.. Counter-Example to a Recent Result on the Stability of Interval Matrices by S. Bialas. Int. J. Control, 1984, 39:1103-1104
- [3] Petkovski, O. B. Stability Analysis of Interval Matrices, Improved Bounds. Int. J. Control, 1988, 48, 2265-2273
- [4] Taussky, O. A.. Recurring Theorem on Determinants. Amer. Math. Monthly, 1949, 56:672-676
- [5] Buslowicz, M.. Comments on Stability Analysis of Interval Matrices; Improved Bounds. Int. J. Control, 1990, 51:1485 -1486
- [6] Soh, C. B. Necessary and Sufficient Conditions for Stability of Symmetric Interval Matrices. Int. J. Control, 1990, 51:243-248
- [7] Xu, D. Y.. Simple Criteria for Stability of Interval Matrices. Int. J. Control, 1985, 41:289-295
- [8] Bodewig, E. . Matrix Calculus. Interscience Publishers Inc. New York, 1959
- [9] Mori, T. and Kokame, H.. Convergence Property of Interval Matrices and Interval Polynomials. Int. J. Control, 1987, 45:481-484
- [10] Lancaster, P. and Tismenetsky, M. . The Theory of Matrices, 2nd Edition. (Orlando: Academic Presss), 1985
- [11] Kokame, H. and Mori, T.. A Root Distribution for Interval Polynomials. IEEE Trans. Automat. Contr., 1991, AC-36:362-364
- [12] Huang Lin, Wang Long and Yu Niancai. Some Problems of System Robustness Backgrounds, Status, and Challenges. Control Theory and Applications, 1991, 8(1):11-29

区间矩阵稳定的充分条件

梅正阳

(咸宁师专数学系·湖北咸宁,437005)

摘要:本文讨论了几类元素不确定区间矩阵的稳定性问题,得到了若干充分判据,改进了对称区间 矩阵稳定性的结果.

关键词:区间矩阵, Hurwitz 稳定; Schur 稳定; 严格对角占优矩阵

本文作者简介

梅正阳 1964年生·1985年毕业于咸宁师专数学系,1991年9月至1992年7月在上海复旦大学数学系进修学习,现_{为制}北咸宁师专数学系教师·研究兴趣为鲁棒控制理论,如区间动力系统等.

国际会议消息

(转载 IFAC NEWSLETTER 1993, No. 1)

īde	1994	Place	Deadlines	Further Information
FAC Symposium (2nd)	March	Galveston,		Dr. R. Wolfe, 610 Texas Avenue
Modelling and Control in Biomedical	27-30	TX	*	Galveston, TX 77550, USA
systems		USA		
FAC/IFIP/IFORS Symposium	July	Tianjin		Prof. Liu Bao, Director
Transportation Systems	26-28	PRĈ	4.1	Institute of Systems Engg.
heory and Applications of			*	College of Management
dvanced Technology	and the second			Tianjin University, Tianjin 300073
<u> </u>				China, P. R.
	Tulas	Tokyo	31 Oct.	Prof. Yasuchika Mori, Dept. of Mech. Engg
1994 Asian Control Conference	July		1993	National Defence Academy
(in cooperation with IFAC)	27-30	Japan	1990	1-10-20 Hashirimizu, 239 Yokosuka, Japan
				1-10-20,11111111111111111111111111111111
SPE/IFAC Intl. Conference	Aug.	Ottawa		Ottawa Carleton Research Institute
CAD/CAM: Robotics and Factories	21-24	Ontario	*	340 March Road, Suite 400
of the Future	21 21	Canada		Kanata, Ont., Canada, K2K 2E4
of the ruture		Cu	And the second	
Th. C. C.	Cont	Rio de	15 Nov.	Prof. P. M. G. Ferreira, R. Marques de
FAC Symposium	Sept. 14-16	Janeiro	1993	São DEE, (PUC-RIO)
Robust Control Design	14 10	Brazil		22452 Rio de Janeiro, Brazil
IFAC Symposium	Sept.	Capri	Nov.	Prof. S. Nicosia, DIE-2 Univ. Roma
Robot Control-SYROCO	зерг. 19—21	Italy	1993	Via Raimondi, 1-00173 Rome, Italy
AMON CONTROL-STRUCCO	15-21	lialy	1000	
FAC Workshop	Sept.	Madrid	1 March	Prof. Juan de la Puente
Distributed Computer Control	28-30	Spain	1994	ETSI Telecommunicacion
Systems-DCCS 94	20 00			Universidad Politecnica de Madrid
		Haraka I	r i Vita	E-28040 Madrid, Spain
FAC Symposium	Oct.	Valencia	20 Dec.	Prof. A. Crespo, Dept. Ingenieria
Artificial Intelligence in Real Time	3-5	Spain	1993	Universidad Politecnica de Valencia
Control				POB 22012, E-46071 Valencia, Spain
FAC Workshop	NT	Chiman		AACC Secretariat, Prof. A. Haddad
Trends in trans	Nov.	Chicago		Dept. of EECS, Northwestern Univ.
Trends in Hydraulic and Pneumatic	15—16	USA	*	2145 Sheridan Road
Components and Systems		* .		Evanston, IL 60208-3118, USA

^{*} not yet known