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Robust Stabilization for a Kind of Uncertain Systems

. SHEN Tielong
(Department of Automatic Cagtrdl, Yianshan University +Qintiuangdao, 066004, PRC)

Abstract; In this paper a robust stabilization problem is studied for plants with both structured and
unstructural uncertainties. An He. robust performance problem is investigated, where parameter un-
certainties in system input and output matrices are considered. It is shown that the problem is equiva-
fent to a standard He. design problem for an extended systeln of the plant with a scaling parametet. Us-
ing this result, a solution of the robust stabilization ptoblem is dorived by applieation of existing Hw”

technique. »
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1 Introduction

. Robust stabilization problem have recenved a great dea.l of attentxon in the past years. It is
;well known that most effective method to solve the problem is H, design approach. For unstruc—
tural uncertainty described in frequency domain, robust stabllxzatxon problem is equlvalent to an
;H,,, sub-optimal design problemm which can be solved by solutions of two Riccati equa'aons[Z 3,
;For structural uncertamty described in the state space such as EAF, an effective method dealing’
‘:thh robust stability is quadratic stabilization[#], and it is shown recently in [5] that the
’;'quadrauc stabilization problem can be reduced to an H sub-optlmal desrgn problem. _

4 In this paper, attention is focused tc robust stabrhzatron probilem for linear plants with both
;Structural uncertainty and parameter perthrbatnons. 1t will be shown that the solution can be ob— i
‘itamed by solving an equivalent Ho, robust performance design problem for an extended system of
igplant with parameter perturbatrons. Among various methods dealing thh He robust performance
;problems, the ARI (Algebraic Riccati Inequality ) method seems to be most sunple and effectlve. ‘
.;‘U;T;hrough the method a conservative result is obtained since a fixed Lyapnov function V{z) is re-
‘Quired for all parameter perturbations in plant. Static state feedback controlleré for this problem
;/“e designed via ARI method in Xie et al. [#7) and Shen et al. [, And linear dynamic controller
B discussed in Xie et al. [19), However, these results can not be applied to our robust stabilization
;:l’foblem , because a dynamic controller-is required as well as perturbations in the disturbance input
‘Matrix should be considered in order to solve. the problem. In [10] only the dynamic controller is
'd'sc“med and in [ 9] only the perturbation is involved.

In the first part of this paper the robust stabilization problem is reduced to the robust perfor~
\"w
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mance desngn problem which has the perturbation in the disturbance input matrix, Then it )
shown that the H, robust performance desxgn problem can be transformed to a standam H% -
-optlmal design problem. Fmally, a solution of the robust stabilization is obtamed by S()lvlng the
standard problem. :

2 Preliminary

The plant consxdered in this paper has both structural and unstructural uncertainties

’ a.nd
given by (1).
P =P(s,2) (I + 4P(s)), W
AP (s) denotes the unstructural uncertainty with the properties
: 4P|l < e, 4P(s) € RH.., )
P(s,X) represents the plant with 'parameter perturbations such as
P(8,X) == | -oreevemremedrommenenannns
%) |_0'+AC D+AD_| . ®
[44 48]  [E]

lae anl = lEz_I'EEFl Fz], zeg

where E,, E,,F, and Fz are given matnces, ami unknown matrix ¥ € Q is square with -appropri-
“ate dlmensxon ’
B ={Z|ZF'z<1}. 4)
When 4P=0and 5= o the plant Po(s) P(s,0) is called nominal plant. | |
Remark There are many literatures which discusse (l) with £=0 or 4P=0. When 3=
0, (1) denote plant with uncertainty in high frequency range, this is usual case in which a lower
order model was used for designing controller. When AP=0, (1) denote plant w1th uncertain
parameters, for example, a manipulator with different loads or under different operating envi-
ronment, aircraft under different fjghting conditions, etc.. In fact, these two type uncertainties
must be considered simultaneously, because we have to use a lower order model for simplicity,
and we have to consider different operating environment in practice.
Robust stabilization problem (RSP) Given the plant (1), find a feedback controller X ©)
such that the closed loop system is stable for any € Q and 4P(s). :
" When parameter perturbation is given as X, it is well known that a closed loop system with
a controller K (s) is stable for any 4P(s) if and only if
IK(HP(s, 21 4+ K(IP(s,2) ] oo < &1
S’o’{h‘at, we have the followmg fundamental Lemma. _
‘ Lemma 2.1 Let y=¢". The closed loop system in Fig. 1 is robust stable if and only if
o IK@P 6D + K@PG6,D]- 1|]‘,‘,< y ()
for any Z€ Q. o
Hence, the robust stabilization problem becomes to find a controller K (s) which satisfi®
(5. It will be shown later that the problem can be transformed to the following Ho, robuSt pet”
formance design problem.
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No:
Heo robust performance design p roblem' (RPP) Given a generalized plant G(s,).’.') find a
wﬂaouer K (s) such that the closed loop system is stable and ' v
||T~(s,2') "co <y . ‘ 6
» any Y€ Q, where T, denotes transfer function from w to z.

The generalized plant is glven by

A+ AA ; B, + 4B, B, + 4B,
[Gun Gzl [ :

G(s,2) = le J = i 0 Dy ’ @

| n % o4 a0 Dyt 4D Dy 4D

[4A 4B, 4B;] [Ei]
= \F, F, F re Q. 8
e . an) " |l C , F], T € (®
Let the state space representation of the closed loop system be given by

2, = A(2D)z, + B(D)w, ‘ . )
z = (D)2, : 10

Lemma 2. 2 Suppose that the state space representation of the closed loop system with a ’
controller K (s) is given by (9), (10). If there exists a positive definite matrix P such that
AT(Z) + PA(Z) + y ?PB(E)BI(Z)P + CI(Z)C(D) < 0 an
'for any Z€ Q, then K(s) is a solution of the RPP.
© Proof The robust stability follows immediately from (11). The validity of the norm con-
;dluon can be shown by consndenng "Pa: with 2(0)=z(c0)=0. Q.E.D.
Lemma 2. 2 gives a conservative result to check K (s) being an H., robust performance con-
k‘ft:;oller; But it is a feasible way based on the Algebraic Riccati Inequality ARL. In this paper; we
focused our attentlon on the solutions of H., robust performance problem which satisfy. the condi-
";tion (11), and call them H.. robust sub-optimal controllers. Note that the set of H,. robust per-
;formance problem which satisfy the condition (11), and call them H., robust sub-optimal con-
itrollers is a subset of H,, robust performance controllers.
Now, let us consider the relation between the RSP and the RPP. Defme a generahzed plant
8(s,%) of the plant (1 by
lP(s,zz) — P, )]
Lemma 2. 3 If there exist an H., robust sub-optimal controller K (s) for the generallzed
Dlant G(s,X), then K (s) is a solution of the robust stabilization problem for the plant P.
 Proof The result follows from Lemma 2. 1 and Lemma 2. 2 with the fact that
K(s)P(s,2)[I + K()P(s,2)]" = LFT(G(s,2);K()), (13)
';;'Where LET denotes linear fractional transformation. Q.E.D
3 H.. Robust Sub-Optimal Controller Design
In this section we discuss a design of an H., robust sub-optimal controller for the plant G(s,

G(s,2) = a2z

z ‘ .
: ). The controller obtained here is of strictly proper. Consider an ARI given by
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A™X + XA + y"2XBB'X + €7 < 0 ;
with the Hamiltonian matrix a Q)
[ A4  y BB
H= . ,
|- ¢ — a4l ‘ o -
Define the matrix functaon AR by : : .
1]
AR(H,X) =[X — IH Lxl
=ATX + XA + y 2XBB'X + Q‘C. (15)
Conszder the ARI with perturbations in matrices 4 and B.
(A + AA)TX + X(A + 44) + y~2X(B + 4B) (B + AB)™X + CTC < 0, an
[44 4B] = E).'J[F . .
For a given 2>0, define matrix by
' [ A y~2B,BF] ,
e, —a4l” 18
where ‘ - o ;
A, = A+ (M) ~2BFiF., i (19)
B, = [BR ME E], - (20)
o= lesl 2
R = I+ ()P, (22)

Lemma § 1 Assume that FJ" 1. Let X>0 bea solutlon of AR(H, X)<0 Then, X is
@ixo a solutnon of ARI (17) if and only 1f there exists an A>0 such that
; AR, X) <0 " (@23
Proof Necessity. Assume that (17) holds for any Z€ Q. (17) can be rewritten as fol-
lows. ‘ - . ' »
AR(H,X)+ XEZ(F, + y"zFbBT}’) + (F, + y—zFbBTX)TE'rETX
< — y“tXEZZE'X. ' (¢2)]
So, for any £#0, we have ‘ .
EAR(H ,X)E + 28XEX(F, + y‘zFbBTX)ﬁ <~ yTUTXEXI'E'XE, Y X €9 25
From Lemma 3. 1 in [11], there exist a (&) € @ such that
maxl:TXEﬂF + yIBTXOE| = chXEZ'(r:) F, + y—zmrx); (26)

reg

and | IO =1
Thus, from (25)
EAR(H,X)E + 28XEE(F, + y~FBX)E
< §TARH, X3¢ + 287 XBE(E) (F + v‘zFbBTX)é
<= yXEFXS. ; . o
Hence, we have : ‘ ' o |
ETAR(H, X) 4 y 2 XEETX)¢ << — 28XEE(F, + y tFB'X)E, YV ZE 9 @
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¢ " using a technique similar to that used in the proof of Theorem 3. 3 in [11], it follows

re exist an &>0 such that

. tthe
L SXEEX+ e[AR(H,X) + y*XEE'X]

+ (F, + yFREX)TF A v IREX) <0 (29)
. ggefOr®? (23) follows from (29) with a=/¢e.

Sufﬁciency. The proof follows immediateiy by considering
AR(H,,X) =AR(H,X) + y?XEE'X + #XEE'X
A=2(F, + yREXN(F. A v FEE)
_AR(H,X) + y?XEE'X + XEE(F, + y *F:B"X)

+ (F. + y BT X)TEE'X + M), 30
ghere :
. M(D) = [XEE — (Fu + y"FEX)TI[XEE — (F. + y XTI > 0. Q.ED.
w K(s) bea controller described by ‘ ‘ ‘ .
: 9= An + By> g (31)
: u = Cons- : : : . - (32)
fur given >0 and >0, define k=yA and R}=1I+k"2FIFy.
 Theorem 3.1 Assume that F/Ff=1. K(s) given by (31), (32) is an Ho, Tobust sub-opti-
pal controller for the plant G(s, Z) if and only if there exit a 4>>0 and a positive definite matrix

such that
AR(H;,X) <0, (33)

,f;vf/here the Hamiltonian matrix H, is given by
N PO y~2B,B]|
=g, —al’ | |
Ao A0, g 0] [ FBFF. B+ RUBFIRTTO]

lo al™ lo 8l lee+ ¥ 2DaFiF. Dz + AN
B, = [T 0] [BiR kB Eq]

LO Bu] ,l_Dle kE, Ezl ’
, e bl 0

C,= : .
»= Lo, aowwd oo’ .
Proof Let a state space description of the plant G(s,Z) be given by -

i=(A+ 4z + (B t+ ABDw + (By + 4Buy S &Z))
z = Cwz + Dy, . L ¢
y = (C; + 40z + (Da + ADDw + (Dgz + ADDu. . .- (36)

?Then’ the closed loop system with the controller K (s) is given'by a state space equation with the
Mate vector z,= [z Pul .
i, = (A + 4Dz, + (B + 4B)w, : 37
z = Cx,y (38)
[44 4B]= Ex[F. F) o ; - (39)
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where : ' -~
o4 BC, 1 _ [B 1]
A= J' P lpow 1
BC; A.+ B.DyC B.Dy
C= [01 Dlzac]’
7 E - : _
R [F., FC], Fo=Fy
= lpE 1°
Hence, the desired results follows from Lemma 3. 1 with thé following definitions.
’ A, = A + ¥ ’BF}F.,
N - (40)
B,=[BR *xE K], W
. = )
P 1
S A (42)
p2 — —2FTE
R I + k—%FiFy. (43)

In this theorem a necessary and sufficient condition is given in terms of ARI for % (.) being /i
H.. robust sub-optimal controller. Next theorem gives an equivlent condition with which the stan.
dard H., controller design method is available to obtain the controller.
Theorem 3.2 Given A>>0. There exists a positive definite matrix X satisfying AR (3,
X)>>0 if and only if K (s) satisfies
ILET (Pas K [lo < 75 (44)
where

A + k~2B,FTF, [)311@l kE, E,] B, -+ k~B,FTF,

P, = - o , 45
* i) e 5

Yo + k2D FIF, ' [DuR; kE, E;] Dy -+ Kk *DuFiF, '
Proof Note that a state space realization of LFT(P;, K) is given by

LET(Ps, K) = |5t | (46)

where A;, B, and O, are given (40)~ (43). Thus, the theorem follows immediately from Lem-
ma 2. 2 in Zhou et al. [12], Q.E.D. '

Corollary There exists a strictly proper He robust sub- optimal controller K (s) for ;he
plant G(s,X) if and only if there exist a >0 such that X (.s) is an H,, sub-optimal contlfolle
the false plant P, given by (45) with a scaling parameter 4.

4. Obtaining a Solution to Robust Stabilization Problem J

In this section we discuss the RSP defined in section 2 for plant (1) with uncertainties: The
robust stabilizing controlier obtained here is again of strictly proper. To obtain the controller we
assume that

"Al) (4,B) is stabilizable.
A2) FFi=1I. » s

al-
In view of Lemma 2. 3, it is clear that an H,, robust sub-optimal controller for the gen®’
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W‘ 4 plant G(s,X) gives a desired controller for the RSP.
‘ - [0 r
P(S,Z) - P(s’z)
A+ AAi B+ 4B, — B+ 4B;
=0 i o 1, Un
lo + 4¢ i D+ ap, — D+ 4p,]
whefe :
[4A 4B, 4B;] [E1]
= Y[F, F — F re Q.
e an, apd = g7 l: |

From Theotems 3. 1 and 3. 2 a desired controller is obtained by finding an H.. sub-optimal con-
goller K (s) for the false plant P, with 4 ‘

A+ k?BFYF, ; [BR, kE, Ey] — BR}
_rer o .
B e 0 |- 2wl | (48
) + k—2DFF, | [DR, kB, E,]  — DR}

where Bi=I+k"2FFy, Ry=T-+k"2F}F, and k=1y.
Given matrices F and K, define Hamiltonian matrices H,(F) and H,(K) by
r 4 BRIBT + (1 + K*)E\FET)

H,(F) = L__ oD g _l s 1 49)
- r 4 BB™ .
H,(K) = L" . ZTJ s (50

where ’
A= 4+ BGFIF, — EDF,
ST = [FT ATN(F — PP,

A= A+ KC+ ¥ *B + KD)FiF,,

B=[(B+ KD)R, k(E,+ KE;) E,+ KE;].
Theorem 4. 1 Assume that (A-+%—2BFYF,, C-+¥~2DFIF,) is detectable for a given A}O.
ere exists a strictly proper H., sub-optimal controlier for the plant P, if and only if there exist
>0 and Y>>0 which satisfy the following conditions

a) There exists F such that

AR (H(F),X) < 0. : ' GD
b) There exists K such that ‘ ' .
AR(H,(K),Y) < 0. (52)
¢) N=p¥—X>0. ’ |
Proof Let the controller K (s) has the following state space realization.

om o
K(s) = ‘_C OJ‘ T (53)

" Beasy to show that for given y>>0 and 4>>0, there exists K (s) such that ILFT(Py, K) || o<l
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y if and only if a strictly proper R (s) satisfies |[LFT (P, K) ||y, Where
[4, + BDRIC, B]]

K(s) =1 c. 0]’ (54
A+ k2BFIF ; (BRy BBy B~ BRE
po= | rof 0 rr 1y "
I_A—lFJ L— l‘leJ (85y
+ & 2DF3F, ' [DR, kE, K] 0

Since (4, B) is stabilizable, (A+k—2BF}F,, BR}) is stabilizable for any 4>>0. Hence, tpe theq,
rem follows from the result given in Sampei et al. 31, with the detectablity assumption,
E.D. ‘ @

A check of det'ectablit'y of (A-+k—2BFYF,,C+k~*DF3F,) is necessary in above theorem whey
a standard Ho theory is applied to our problem. If the nominal plant P, has no zeros in the g |
half plane this check is not necessary, since (A+k2BFSF,, C-+k~2DFIF,) is detectable for any ;
A '

The following theorem gives a solution to find a robust stabilizing controller using a standarq
H,, design method.

Theorem 4. 2 Consider a strictly proper controller K (s) and the plant given by (1). It
there exists a A>0 such that fhe conditions in Theorem 4. 1 hold, then a robust stabilizing con-

troiler is given by

[4 Bl | | |
K = , : .
(s |_C., 0_] ‘ (56)
C,=F,
Bc = ‘YZN—IYK 9

A, = A— B,(C + DRIC, + t—2DF}F,) — BR3C. — N~M,
where |
M =— CTR}B™X + CT(RYC, — A7°FiF) + H
+ V_ZN{(BoD — B)RB + K*(B.E, — EDET + (BoEz — EDET}X,
H =— AR(H,(F),X) > 0.
Proof The proof follows immediately by Lemma 2.3, Theorem 4. 1 and the Corollary 1 in
Sampei et al. ] Q.E.D.

5 Conclusion

In this paper we have developed an equivalence of robust performance design proble™ wil
pert_urbation in the disturbance inputv matrix and a standard H., sub-optomal problem. The equi¥”
alence is used to solve robust stabilization problem for the plant with both structural and unst™”

tural uncertainties.
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