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Abstract, in this paper we discuss the problem of synthesizing deadlock-free modular state feed-
back controllers for discrete event systems. By introducing the D-invariant relation between automata
pairs, we show that for the case the control objective is expréssed in terms of the intersection of two
predicates, a necessary and sufficient condition for the modular state feedback controller to be dead-
lock-free is that the component subcontrollers are all deadlock-free and the corresponding pair of au-
tomaton meets a D-invariant relation. A design procedure for deadlock-free modular state feedback
controller is aiso presented.
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1 Introduction

Modular supervisory control of Discrete Event Systems (DES) was studied first by Ramadge

and Wonham[1], and developed later in [2,3]. It is an efficient way to overcome computational

" complexity in control of DES. By “Modularity” it means that the desired system behavior, ive. ,
the specification, is given in terms of a set of independent subspecifications. If one synthesizes
the component subcontrollers independently and then merges them in the form of controller con-
junction or disjunction, one gets the so called modular controlier. This kind of synthesis offers us
the merits of lower computational and hardware requirements, as well as the convenience of con-
troller maintenance and redesign®J.

The main problem related to modular supervisory control ig, when the component subcon-
trollers have some desited properties, how to guarantee that the modular controller behaves in the
same way. In [1,3] the problem of nonblocking modular control are discussed, and in [5] the
computational problems that arise in nonblocking modular control and so cailed SCPBLY are dis-
cussed.

Another problem related to modular synthesis is deadlock. This happens in the case that the
modular controller is formed by subcontroller conjunction. _This fact was first observed by Profes-
sor Wonham as reported by Y. Liin [6] and a special solution to deadlock-free modular supervi-
sory control of vector DESs was given. However, no further result has been obtained later on.
To our best knowledge our study is the first systematic attempt to solve this problem for geﬂefal
DESs.
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 Preliminaries and Problem Formulation

The Model
An automaton @G is a five tuple G= (¥ ,Q,0,q05Qn) s Where 2 is the event set, Q is the state

i
ot § is the transition function, g, is the initial state, and Q, is the set of marking states.

Assign ¥,C X be the set of controllable events. Here controllability of an event means that it
: (a0 pe prevented from occuring by an outside control agency. Let X, be the set of uncontrollable
' pvents: Define y:X,CyCZ be a control pattern. If there is o€ I such that y(o) =1, then o is
pe,—mitted to occur by y, otherwise o is prevented from occuring by y. Let I'={y.Z—={0,1} A
y o€ Xy, y(0) =1} be the set of control patterns. The control of DESs is exercised by switching
e control patterns according to the observed history of the controlled system.

The system G coupled with the structure of I' is called a Controlled DES, and it is formally

defined as:
G, = (I' X Z,Q,0:590)
where
6(o,9), if 6(o,q) is defined and y(o) =1,
0(y,0,9) = { i .
» undefined, otherwise.
A control f€ IV is called a state feedback. The controlled DES G, controlled by f is the sys-
tem _
¢ = (Z,Q,0 90
where
8(059) s if 6(o,q) is defined and f,(¢) = 1,
¢ (o,q) = { A .
undefined, otherwise.
2.9 Predicates and Control Invariance '

Let P.29—{0,1)} be a function defined on the nonempty state set Q. It is also called a predi-
cate characterizing Q. Let P be the set of all predicates defined on ¢. Y P,,P,€ P, define opera-
tions (~, A,V) as follows; .

' (~ P)(¢) = 1 if and only if P(¢) = 0,
(P, A Py (g) = 1 if and only if P1(q) = P2(9) = 1,
P,V Py =~ ((~P1) A (~ Pp).

It has been proved(?] that (P; ~, A,V ) is 2 Boolean Algebra.

There are cases the control objectives are expressed in terms of predicates, i. e. to guarantee
all the reachable states of the controlled system meet certain requirements as asserted by the given
Dredicates. Since (P; ~, A,V ) is a boolean algebra, the aforementioned control problem is
identical to an invariance problem in conventional control theory, i.e., to keep the state trajecto-
ties of the controlled system remain at a state subset @ € 29,

The following predicate transformations are used to describe properties of the given predi-
Categl2], '
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i1 i 6(0,q) is defined and P(8(o,q)) = 1 or 8{o,q) is undefineq,

0, otherwise. .
1 i3 ¢ € P, d(s,¢) is defined and ¢ = 6(0,¢') »

0, otherwise.

wip,(P)(g) = {

sp.(P) (g) = {

Detinition 1121 P is called control-invariant with respect to (wrt) G, if for some state feeq
back fEI' ¢, there is _
p<Lwipl(P) Yo€EZ
where :
wipf(P) = wip, V ~ £
It P is control-invariant and P(ge) =1, then it is shown [2] that at all the reachable states
of the closed loop system, P will keep true. This fact is equivalently characterized by a contro]-
independent property of P. .
Definition 2023 P is called Z,-invariant wrt G if
P wip,(P) Vo€ 2w
Proposition 12} P is control-invariant if and only if it is Z,~invariant.
2.3 Basic Operations
Definition 3 GG is called realizable if G, is formed by only deleting controllable arcs
from the transition diagram of G.
Definition 4 . Given G=(Z,@,6,90) and G=(Z,Qis&>qu) ((=1,2), Where QCQ, &=
8|Qs (the restriction of & on @) and gu=go, then
G N G= (Z,@ [} Q61 A 02590) »
G UG = (& U @ V 82590
The above operations are called automats conjunction and disjunction respectively.
Definttion 5 A controlled DES G CG is called deadlock-free if one of the following condi-
tions hold ;s
DY g€ ¢f (the reachable state set of )., J o€ Z, such that #(o,9) is defined or
2) ¥V ¢€@f(CQ), 3 o€ Z, such that 8(o,q) is defined.
2.4 The Problem
Example 1 Let G = (Z, @5 q0s Qa)> Qu=Q e the controlled plant, L (G) =
(0,02((Bif)* + (Bshs)*). Assume that f; and s are controllable and that L (8) =
102(fufe) © and L(8z) =0102(Bsp0) - 1t is easily checked that §; and §, are deadlock-free DUt
81 A 8, is deadlocked.
This simple example demonstrates the following facts. First, since 8 and S, ave all closeds
8, and S are nonconflicting. So nonconflicting cannot guarantee deadlock-freeness. Secondly s
the deadlock-freeness of component subcontroliers can not guarantee the deadlock-freeness of th
modular controller.
Before we proceed any further, we state the following proposition on the relation petweel
nonblocking and deadlock-freeness in supervisory control of DES. The proof is direct.
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Proposition 2 A nonblocking DES G= (Z,Q,6,805Qx) is deadlock-free if and only if ¥ ¢

¢ Qus Z(g)#8. Here Z(g) is the active event set of G at state g, i.e. , Z(g)= {c€ Z,8(s,q)
s defined } .

Deadlock-Free Modular State Feedbacks
3.1 D-Invariance

Definition § Given ¢ and GCGG=1,2). (G1; G2) B8 called D-invariant if ¥ ¢€ Q1)
Ors Zo, (D) N Zq, () #8.

Notice that D-invariance is stronger than that of deadlock-freeness (see Definition 5). Fur-
ther we note that the D-invariant relation is reflexive, symmetric, but generally not transitive.

The following theorem is the first resuit of this paper. It states a necessary and sufficient
 condition for the deadlock-freeness of medular state feedback controllers. "

: Theorem 1 Given & and G;(i=1,2), G,(i=1,2) is a realizable subautomaton of G, then
¢,(\Gy is deadlock-free it and only if (G1, G,) is D-invariant.

 Proof Sufficiency; Since (Gy, Gy) is D-invariant, V g€ N Q25 o, (@) N Za,(DF#V. So
there is a vE Eo,no,(ﬂ such that &; 52=0 A\ J; is well defined at (v,q). From Definition 5, N
G, is deadlock-free.

Necessity ; Suppose that Gy [} G; is deadlock-free put (¢, Go) is not D-invariant. So there is
1€M@ st Zal(q) ﬂE’Gz(q)¢&. Subsequently there is no ¢ € Z, such that 6,52 is defined.
Since G4[) @, is deadlock-free, there exisis a o€ X, such that (o ,q) is defined. By the assump-
tion that Gy, G, are all realizable, it follows that 6,(0,q) and 8;(a,q) are all defined. This leads
1o the fact that 8;pz(o,q) is defined; a contradiction to Ealﬂ}:’az(q)¢ﬁ.

 Remark 1 The D-invariance relation is defined on pairs of given automata rather than on
theif corresponding state sets. This is pecause a control-invariant state subset corresponds to a
number of realizable subautomata of the given automaton. However we can show that there is a
maximal realizable subautomaton that corresponds to the control-invariant state subset.

Remark 2 With graph-theoretic terms we know that the transition diagram of a realizable
‘subautomaton of a given automaton is exactly a subgraph of the transition diagram of the given
‘automaton by deleting some controllable arcs. ,

It should be emphasized that without the realizability assumption of G;(i=1, 2), Theorem 1
iS not necessary in general. In fact, for the case of arbitrary G:(i=1,2), we have
- Corollary 1 A sufficient condition for 6,(1G, to be deadlock-free is that (G;,G2) i D-in-
variant,

We point out here that for the sake of computational efficiency and ease of modular synthe-
Sis, Theorem 1 is generally used.

Corresponding to Theorem 1, we give a definition on deadlock-free conjunction of compo-
Bent subeontrollers. ‘

Definition 7 Given two component state feedback subcontrollers f1, fzs for G which real-
i2¢ the subautomata G, and G respectively are called D-invariant if ¥ ¢€ @10z 5, Zo, (@)
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With difinition 7, we have

Theorem 2 Givenvcomplete and deadlock-free subcontrollers f, f2, their conjunctign <
f1 A\ f2 is complete and deadlock-free if and only it (G4,G,) is D-invariant. )
4 D-Invariant Subautomaton of A Given Automaton

In this section we will show that for a given @ and G;(i=1,2) CG, if we fix Gy, then there
is G4CG,, called the maximal D-invariant subautomaton of G, wrt Gi.

Let Dg, (Gp) = {6 |GP TG, (61, GF) is D-invariant} then there is

Proposition 3 DG is closed under disjunction operation. ‘

The proof of this proposition is direct. The implication of it is that D, (G;) contains a mayj_
mal element. Denote this maximal element as supD,;l (Gy).

Combine the result in [ 7] and Proposition 3, we reach the following conclusion ;

Proposition 4 Let CDg (Gy) == (G§ |G CG,, GF is realizable, and (G§°, G1) is D-invari-
ant} , then CDg (G,) is closed under disjunction operation.

Similarly we denote the maximal element in C/Dal(Gz) as supCDgl(Gz).
5 Computational Procedures
5.7 Synthesizing Deadlock-Free State Feedback Controller

The following proposition shows that for a given @, the class of realizable and deadlock-free
subautomata of a given automaton contains a maximal element. ‘

Porposition 5 Lét Gp={G®|GPCE, G¥ is realizable and deadlock-free} , then Gy is
closed under disjunction operation. ;
Based on Proposition 4.and 5, the following algorithm is proposed.
Algorithm RD
Step 1 Construct G§(C G such that Gf is realizable; ,
Step 2 For all states g in the state set of G§, if Zs®(g) =N then € Qsu, otherwise g€
Qaoot 3 ‘ o
Step 3 If Qua70, then perform a forbidden state control synthesis by letting Qs =5
Otherwise go to Step 5; Let the resultant subautomaton be Gif;

Step 4 Let ¢=i+1, go to Step };

. Step 5 Stop.

5.2 Design Procedure DMSFC

There are cases that control objectives are expressed in terms of predicate conjunctions. In
this paper we only consider the situation that P=P; A P, For the case that the conjunction is
composed of more than two predicates, the solution is much more difficult.

For P=P; A\ P,, it is equivalent to construct state feedback controller f such that G*= ¢
&% if it ever exists. The following algorithm, called DMSFC (Deadlock-Free Modular St2%
Feedback Controller) , are used to accomplish the above mentioned synthesis problem.
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Algorithm DMSFC

Step 1 Construct Gy, Gy such that Gyy and Gy are all réarizable and deadiock-free:
Step 2 Compute supCDq, 0(G‘zo);
Step 3 Construct state feedbacks f; and f, such that Gfi=0,,, sz-—-supCDam(Gzo);
Step 4 Let f=f1 A f2
It is easy to show that this algorithm will converge if G is of finite state.
5.3 Computing supCD,,(Gz0)
In algorithm DMSFC we left supCDg  (Gy) untreated. The followmg is an algorithm to com-

ute it

' Let Go=Gig A\ Gz then G is realizable but not necessarily deadlock-free. We construct GonC
G such that Gy, is the maximal realizable and deadlock-free suMutomton of Gy. We expand Gy,
in such a manner.

1 Oompute G20-Gy, the subtraction of Gy from Ga;

2) Add all the states and transitions of Gy-Gy to Gy, if they are reachable from any state in
‘Goe Let the resultant subautomaton be Gin, then we have

Proposition § Gzﬁ=supCDao(Gzo) .
g Conclusion

Modular supervisory control is an imporfant synthesis method in DES control since it offers
the advantages of computational efficiency and the easiness of controller maintenance as well as
convenience of task changes. However, as regarding to the global properties of modular supervi- /
‘fsory control such as deadlock-freeness, the problem is far from satisfactorily solved.
The main motivation of this paper is to consider deadiock problem in modular state feedback
f"oontrol of DESs. We have shown that our approach keeps certain degree éf modularity while
mamtalmng the deadlock-freeness of the global system. However, if the involved tasks are more

than 2, then the question is still unanswered.
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