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Abstract; The paper defines the concept of symmetry for discrete-time nonlinear control systems,
which parallels the corresponding concept in continuous-time nonlinear contro] systems. It shows that
under some conditions, nonlinear control systhms with symmetries admit global decompositicn in terms
of lower dimensional subsystems and feedback loops.
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1 Introduction ‘

The notion of symmetry of a dynamical system has been a subject of long-standing interest
in Physics and Mathematics. Roughly speaking, a dynamical system possesses a symmetry if its
'dynamics are invariant under a (coordinate) transformation or 8 familjf of (coordinate) transfor-
mations(!+?]. The existence of such a symmetry implies usually that the system can be decomposed
into subsystems of lower dimension, or that the system can be reduced to a (quotient) system of
lower dimension. In this way the knowledge of the existence of symmetries can be very useful for
the qualitative understanding, or even the explicit description of the dynamics of a system.

For a class of continuous-time control systems, through the use of differential geometric
techniques, the notion of symmetry has been defined. For sxample, Schaft has given the defini-
tion of symmetry for Hamiltonian systems with input and cutput, applied it to optimal control
problems and proven that the existence of symmetries may simplify the solution of optimal control
problems(®4], This notion of symmetry is further explored by Grizzle and Marcus(®] for general
nonlinear control systems, by using in particular families of symmetries generated by the action
of a Lie group. Moreover, in these papers, the role of symmetries in obtaining a local or global

. decomposition of a system into smatler subsystems is emphasized.

Despite the important role of symmetry in studying the structure of continuous-time nonlin-
ear control systems, nothing of the kind can be said to have occurred for their discrete-time coun-
terpart. Given the pervasiveness of digitai techniques in contral applications, it would seemn to be

: especially important, and useful, to extend the notion of symmetry to a class of discrete-time

nonlinear control systems. The goal of this paper is to take the first step in this direction. A con-

—
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cept of Symmetry is defined for general discrete-time nonlinear control systems. Similar ¢ congy,
uous-time nonlinear control systems. with symmetries, it is shown, under various technicaj Oondi‘
tions, that discrete-time nonlinear control systems with symmetries admit global decomposi; ong u;
terms of lower dimensional subsystems and feedback loops. v
Similar to [5], this paper will employ the language of differential geormetty. Some fooq
engineering references for this material are [6,7]; standard mathematical texts are [2, 8,9].
The following pedagogical example is meant to serve as both a “preview of things to come” gy, da
source of examples illustrating some of the aspects of the results.
Example 1.1 Consider a discrete-time nonlinear control system described by
2 (k4 1) 2 (8) (23 ()2 + 24(k)?]% +
jz2 B+ D} 22 (1) [23 (k)% + 24 ()2 ] % + 2,
lzsk+1 | |as® ) + 201 % + v
Gk + 1) (O[5 ()2 + 22 ()] % + u
Let g and ¢’ belong to SO(2), that is, g and ¢’ ‘are two different 2 X 2 orthogenal matrices with

= flz(®),u(k)]. 1.1

determinant 1. Then one can prove that (1. 1) is not invariant under

, b ol
that is, '
0 0
[(’; g’} f[:z(k) ’u(k):] #f{ {f) g’} z(k) 9“(k)}y 1.2

‘but instead. f satisfies

f[g 0] [¢ 0] } . 3

[¢ 0] _ . .
Lo g,J f[m(k)’u(k)]—f{ |_0 g,J (k)’LO g’_l €2

So this invariance involves the controls also. However,. if one does a state-dependent change of
the input basis by '
@] [0 [os(B)? + 2k T%  — 2(B) [as())? + 2 (B)*] 7] [va (k)]

Luz(k)J - ‘.952(’0)[373(70)2 + 934(k>2]_% 21 (k) [#3 (k)% + z4(k)?] % J i_vz(k)_J , (o)
s _ fs®a®? + @21 H = a®n®? + 2®77 @]
] T e ®[m®? + 2@ % s®n®? + m®% | ]
then (1. 1) becomes as follows '
z(k + 1) 2 (B (k)% + 7o (B) =% 2, () v (k) — 22(R) v (k)
z(k + 1) _ 2 (B () ™% + 72 (B) %[ 2 (K01 (B) + 21 (k) vz (k)
lesr+ 1| |es®rd =% + 78 ~HAasB)vg(k) — z4(Bvy(k)
+(k+ 1) (I ()% + 71 (B) AL (B vs(B) + 23(R)va (k)
= fz(®) ;0] 1.5

which does satisfy

‘ 0 0 : :
E]) g,}f'[z(k),v<k>]=f'{g g,}x(rc),v(k)}, (1.6)
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ahere r1(B) =2, (k)2 422 (k)5 ro(k) =z3(k)?+2,(k)? By using the coordinate transformation
28 = n®ys® 5 2@ = pd1 — 3@?*,
23(B) = 1Oy ®);  2(® = 12(O[1 — MO

}{(1'- 5) becomes

g+ 1D = gy (K g2 () 2wz (k)

g2k 4+ 1) = 1207 (B~ (k) 5 ' ‘

¥t + 1) = [gs(®) + 2 ()23 (R)vy (k) — g2(RI*][1 — g3 ()2 %02 (k) Juwp ()1,
conGt D= [ga(E) + 11002 ()vs(B) — 11 (I — 91 (1?1 %0, (B) Jun ()1
ith o * | | - |

wi (k) = {[1+ n(BD2s(B) )2 + ORIV
we (k) = {[1+ g2 (B 2w (k) )2 + ¥2 (k) vy () } A

In this coordinate one sees that the system (1. 5) has a natural cascade deCOr.nposition into a
'system’parameterized by 3. (k) and (k) feeding forward into a éystem parameterized by y3(k)
and y4{k). From this, one gets that the original system (1. 1) has the decomposition in terms of
subsystetns and feedback loops. )
: The rest of the paper is organized as follows. Section 2 gives the definitions of symmetries
used in the paper. Section 3 investigates the global structure of systems with symmetries. It is
\ii;shown,- under some -assumptions, - that discrete-time nonlinear control systems with symmetries
admit global decompositions in terms of lower dimensional subsystems and feedback loops. Sec-
' tion 4 contains the conclusion and comments.
2 Definitions
: This section will fix the notation employed for a discrete-time nonlinear control system and
‘provide the definitions of symmetry.

Definition 2. 100117 A discrete—fime nonlinear control system X is a 3-tuple (B, M, f )y
‘L,where w.B—>Mis a smooth fibre bundle and f.B—>M is a smooth mapping. The points of M are
the states of the system, the fibres of B are the input spaces. The system’s dynamics are defined
by 2(k+1) = fL2(k) ,u(®)] for u(k) En'[z(k) .

, Example 2. 1 For example 1.1, M is Ri— {0}, Bis M XU for U=R*, and f is given by
@D - , |
:ﬁ " ‘Note that B in exmaple 1. 1 is a trivial bundle (being globally the product of M with U).
This occurs if and only if the control spaces are state-independent.
' Definition 2. 2081 Let M is a smooth manifold. A left action of a Lie Group G on M is a
_ Smooth mapping @ .G X M—M such that a) for all zE M, ®(e,s) =1 and b) for every g, hEG,
B(g, B(h,z)) =D(gh,z) for all zE M.

Por further investigations, we denote for each g € G the mapping D(gy+): M—>M by Dys
and the mapping ®(«,2z) :G—M, with £E M, by &, Note that because (O '=0,1, P is a
diffeomorphism. It is easy to prove that example 1. 1 gives a 2-dimensional Lie group action on

,RL‘(O}.’
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We use that following additional terminology.
Detinition 2. 31 Let & be an action of G on M. For z€ M, the orbit of z is given p,
@.z= {0,y € 6}
The space of orbits is denoted by M/G. The projection p: M—>M /G is defifed by z—Gz. Tpe ac.
tion is free if for each z€ M, the map &, is one-to-one. The action is proper if & :GX M— My
M, defined by & (g,2)=(z,P(g,z)) is a proper mapping, that is, if K& MX M is compagy
then & ~1(K) is compact.

Definition 2. 4 Let Y(B,M,f) be a discrete-time nonlinear control system. Let G'be 5 Lie
group such that .G X B—B and ®.G X M—M are group actions. This pair of group actiong is
denoted by (G,0,D). Then, (G,®,d) is a symmetry for X(B,M,f) if for each g&E G,

wo &, =@, m, (2-la)
fo0,=0-f. (2. 1v)
An important special case of the above occurs when the symmetry lies “entirely on the state
space”. ' , ’ '

Definition 2. 5 Let B=M XU for some manifold U. (G,®) is a state-space symmetry of

Y(B,M,f) It (G_,@,(D) is a symmetry of ¥ for 8,= (&,,/du) : (z,u) | = (®,(x),u), that is
f (@, u) = ,(f(z,u)). (2.2)

Remark 2.7 State-space symmetries can be defined globally only for systems in which B is
a trivial bundle since, otherwise, the input spaces are state-dependent.

Example 2. 2

a) Let E(B,‘M,f) be the system consisting of M=R*— {0}, B=M X R* and f as in (1.
1). Let G=diag{g,¢'} with g,¢' €SO(2) and define &, M—M by

0
®y(z) = {:Z ng,

!
and &,: BB by

Je 01 fg O]
Buer) = {LO 7 “lo ¢ u}’
one easily proves that (2. 1) holds, see (1.3). Hence, ¥ has symmetry (G,0,P).

b) Let B, M ,G and ® as above and let f’ be as in (1. 5). Define &,:B—B by 8,(z,u)= (%
(2),u). Then it follows from (1. 6) that (2. 2) holds. Hence, X' has state-space symmetry
(G,9).

Definition 2. 6" a feedback  is a bundle isomorphism from B to B; i.e. 7 is a diffeo-
morphism such that # o »=m. In local trivializing coordinates (z,u) for B, one has 7 (z,s) = €2
r.(u)). Since r is non-singular, feedback can be viewed simply as a state-dependent change of
the input coordinates.

Definition 2. 7 A system X (B, M, f) is feedback equivalent to a system X' (B, M ,f 1y if
there exists a feedback = such that f/=f o r. ‘

Example 2.3 Let ¥ and & be as in Exmaple 2. 2. Define 7;B—B by (1. 4). Then, as i
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Example 1. 1, it is easy to verify that X' is feedback equivalent to Z.
3 Global Structures
This section contains two important results. The first is that if Z(M XU, M, f) has state-

gpace symmetry (G,®) such that ® acts freely and properly and M is diffeomorphic to M/G X @G,
iien X has a global decomposition into a system evolving on M/G feeding forward into a system
on G. The'second is that, under the above conditions, if X(M XU,M, f) has symmetry (G, 8,
#), then it is feedback equivalent to one with state-space symmetry (G,®). This in turn gives
the global structure of such a system.

For the global analysis of the structure induced by the existence of a symmetry, the follow-
ing assumptions will be made.

Assumptions 3.1 a) B is trivial, i.e. B=M XU with U a manifold;

b) @ is free and proper;

¢) M is diffeomorphic to M/G X G.

Remark 3.1 a) It follows from [ 5] that @ also is free and proper if @ is free and
proper.

b) Assumptions 3. 1 ¢) is equivalent to assumption that p. M— M /G admits a cross section,

“that is, a smooth map o': M/G—>M such that p o o=identity on M/G.
3.1 State-Space Symmetries

Suppose Z(M XU, M,f) is a control system with state-space symmetry (G,®P), where @ is

free and proper. Since & is free and proper, M/G is a well-posed manifoid with submersive
“smooth projection p: M—>M /G. (G,P) being a symmetry of ¥ gives that @,f (z,u) =F(D,(z),
u) for all g€ G,2E€ M and u € U. It is easy to verify the following proposition.

Proposition 3. 1 Let (G,®) be a state-space symmetry for a discrete-time nonlinear control
system X (M XU, M,f) with & being free and proper. Then there exists a smooth f/ ; M/G X U—>
M/@G defined by f' (p(m) ,u) =pf (m,u).

1t follows from Proposition 3. 1 that X' (M/GXU,M/G,f') is a well-defined control system

:'on M /G, and it called as a quotient system. Note that solutions of the quotient system X’ corre-
“spond to the “transverse part” of solutions of original system X.:If it is possible to construct an-
%other system, say X, which when driven by the §tates of X' and control sequence u(k) generated
_that part of the solution of ¥ “along the orbits”, then this would result in a cascade decomposition
iOf Z. In fact this can be done globally if p. M— M /G admits a cross section. The basic idea is
‘that a solution of X can be described by specifying how it moves from orbit-to-orbit and then how
it moves along the orbits. The former is given by X', the latter is to be determined.

Let z(0) € M, u(+) be a input control, z(+) the solution of X corresponding to u(+) and y
()= p(z(+)), the corrsponding solution of X’ having y(0)=p(2(0)). Then y(+) should satis-
& ,

g+ 1) = F G ,u (). @.D

Now assume that p: M— M /G admits a cross section, denoted by o, that is, M is equxvalent to
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M/GXG, and define d(k) in M by d(k)=0(y(k)). Since p(d(k))=y(k)=p(z(k)), and g

free and proper, one can write z(k) =®(g(%k),d(k)) for a unique g(k) ©G. The goa] now 3 t

find a difference equation for g(k). It follows from the dynamics of 2’ that N
Lz ,u(@) ] = fFLOQGE) ,d(k)) yu(k)] = 2k + 1) = @[ (g + 1) d& + 1)]

(3. 2)

@ bemg free and proper implies that @, G—»M isa dxffeomorphlsm onto its range. Hence . (3. 2)

can be solved uniquely for g(k+1) to give

gk + 1) = Oxhnf{dLg k), d(k)] u(k)}. ' Qg
Finally, using the fact that d(k)=0(y(k)), one gets
g+ 1) = Olarimnf{PLg®) 90(?I(7C))],u(7€)} 3. 4)

In summary, the following has been proven. ,

Theorem 3.7 Suppose (B, M ,f) is a discrete-time nonlinear control system with state.
space symmetry (G,®). Then, under assumptlons 3. 1, ¥ is isomorphic to the system

y&+ 1D = @@ ,u),
gk + 1) = ‘15a(y(k+1))f{(p[y(k),U(y(k))],u(k)}
which evolves on M/G X G.

Example 4.1 Let Z(B,M,f') and (G,®) be as in Example 2. 2 b). & is proper because ¢
is compact and is easily checked to be free. M /G is equal to R*-{0} and M is diffeomorphic to
M/GXG=[R2-{0}]X R%. Hence, ¥ admits a global decomposition and example 1.1, in fact,
has given the global structure of this system.

3.2 Symmetries

This subsection extends the results obtained for systems with state-space symmetries to sys-
tems with more general symmetries. The key step involves showing that a system with a symme-
try ié (under certain conditions) feedback equivalent to a system with a state-space symmetry.

The following proposition is immediate (c¢f. [4]).

_ Proposition 3.2 Suppose that Z(B,M,f’) has symmetry (G,8, (D) Let ¥ be another G~
action on B satisfying n o ¥,= @, ' m, for any g& G. Then X is feedback equivalent to some sys-
tem having a symmetry (G,®,®) if and only if there exists a feedback r; B— B satisfying f ° 9,

op=for o, forahygEG. , v

Proof Sufficiency. If there exists a feedback r; B—B satisfying f © 8, c r=f o 7 o ¥} for

each ¢g& G, then - .

By L) =@y for(W) =[G or(W)=Ffor W)= f W),
- for all ¥ € B, thatis @, ° f'=§" o ¥,. Hence X is feedback equivalent to X’ with syrametry (¢
v,8). ,
Necessarity If X is feedback equivalent to X' with symmetry (G,¥,®), then there exists &
feedback 7 such f'=f o 7. Since (G,8, ) and (G,¥,8) are symmetries of X and X' , 1esp*”
tively , one has

Fo® cr(d) =@ cfor(B)=0,cflH)=1Ff s V,H)=For¥,¥).
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A sufficient condition for the existence of a feedback r is stated in the following,.

Proposition 3. 3 Suppose Y (B, M ,f) has symmetry (G,8,8). Let ¥ be another G-action
on B satisfying = - ¥ =@, ¢ w, for each g& G. Furthermore-Suppose that M is diffeomorphic to
M/GXG. Then there exists a feedback r satifying 0,;_ or=r o ¥, for each g€ G.

Proof Proposition 3. 2 implies that it suffies to construct a bundle isomorphism »; B—B

. such that
@, or=r ¥, foralgE G (3.5)
pefine 7 by r=0"' < (¥1)~! where ' . M/GX GXU—+B by (y,9,u)—>8,(c(y),z) and ¥'. M/G
XGXU->B by (¥,9,u)—=>¥,(c(y),u). From [5], it follows that & and ¥! are all diffeomor-
phisms. Hence 7 is a diffeomorphism. It remains to be shown that a) # - r== and b) (3. 5).
Fix b€ B and let (y,g),v)=(slf1)~1(b). Then ’
wor(h) =m e @ o (W) = n - O'(y,9,v) = m  8,(c(y),v)
=0, * 7(a(y),v) = G(a(¥)) =z = =n(d).
This gives a). \
For b), let b€ G and observe that
O, °7(b) = 6,20 - (W)"'(d) = 6,° 0'(y,9,v) = 6, 8,(¢(y),v) = 6,(c(y),v),
and ’ :
7o Wi(h) =8 o (W)L o W, 0 Wi(y,g,0) = O« (¥)71 o W, 0 W, (0(y),v)
=6 (V)71 o Wy,(y,9,v) = O « (FHTIW) = 8'(y,hg,v) = O,(c(y),v).

Let now (G,8,d) be a symmetry for . Consider the action ¥ of Lie group G on M XU de-

fined by .
YV, (z,u) = ($(z),u), zE€ M, u&l.
It is clear that » « ¥, =@, - #. Hence, by Propositon 3. 2 and 3. 3 there exists a feedback r such
that X' is feedback equivalent td the control system X' (M XU, M, f') with f/=f o r, having
symmetry (G,¥,®), i.e. state-space symmetry (G,®). Combining Theorem (3. 1) and Propo-
sition 3. 3 one can obtain the following theorem.

Theorem- 3. 2 Suppose that ¥ (M XU, M, f) has symmetry (G,®,®). Then, under as-
sumptions 3. 1, there exists a system X’ with state-space symmetry (G,®) to which X is feedback
equivalent. Hence, X admits a decomposition in terms of subsystems and feedback loops.

Example 3.2 Let 2(B,M,f) and (G,®,®) be as in Example 2. 2. @ is free and proper as
discussed in Example 3. 1; also, M/G=R2— {0} and p. M—M /G admits a cross section. Hence,
Z has a global representaiion in terms of a feedback loop and a system on M /G feeding forward
into a system on G. The feedback function is given in Example 2. 3.

4 Conclusion and Comments

In this paper, the concept of symmetry has been defined for a class of discrete-time nonlin-
ear control system. It has been shown that discrete-time nonlinear control systems with symme-
tries, under a few techﬁical conditions, admit global decomposition in terms of lower dimensional

Subsystems and feedback loops.
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The results in this paper are parallel in several ways to those for continuous-time systemyg in

Grizzle and Marcus®l, However, there are several important differences. The most imPOl'tant
difference between the discrete and continuous-time systems is the definitions of symmetrieg, for
continuous-time case (G,®,®) is a symmetry if 70; f==71"8,

Two directions of research are presently being pursued in order to increase the appﬁcabﬂity
of this work. The first involves local structure of discrete-time nonlinear control systems wity,
symmetries. The second extension involves applications to optimal control probiems. These ype_

sults will be reported at a latter date.
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