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A New Predictive Self-Tuning Controlier

MAGQ Zhizhong and YANG Lin
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Abstract; By introducing a weightjng polynomial ir coet function, in this paper a self-tuning
pole-placement controller based on long-range prediction of process output is proposed for a process
which is described by process impulse response coefficients. The controller can ensure the stability of
the control system and can eliminate the s;teacly—state error of the control zystem ,v the computational
load of the algorithm is less than other predictive control algorithm such as MAC, GPC and so on.
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1 Introduction

Much attenticn has been paid in recent years to seif-tuning controller based on long-range
predictive control methods!!+2), The basic idea of these control aigorithms can be described by fol-
lowing steps, at time k. i) The predictions of the process output from time (k-+1) to time (kx4
N) are made based cn a mathematical model of the process dynamics, the predictions are func-
tions of control vector which consist of the future control actions from time % to time (k4 N—
1). ii) A control vecior which minimizes a quadratic cost functions is calculated. iii) Only ‘the
first element of the control vector is applied to the prcéess , at the next sampling period the whole
procedure is repeated, that is, the receding horizon scheme is taken.

Dichalet’s MACE3] (Model Algorithmic Control) method is one of the multistep receding
horizon control method, it has some nice properties and has been implemented on a number of in-
dustrial processes. The success of the MAC operating on complex industrial processes is due, at
least partially, to the impulse response representation of the processes. In fact, for most complex
industrial processes, parametric models are difficult to obtain. It is known that parametric models
can give results with large error if the crder of the model does not agree with the order of the
plant. Moreover in an industrial environment perturbations affect the plant structure more often
than the measurable variable. This requires a constant checking and updating of model paraine-
ters. The impulse response representation is convenient, since in most industrial processes,- the i-
dentification of the impulse response is relatively simpie. However, when using MAC method,
the transient response of control system is mainly reguiated by a control weighting factor A and it
is impossible to arbitrarily assign the poles-of the control system by selecting the control weighting

factor A.
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It is significant to study the pole-placement controlier based on long-range prediction control
method, because this type of controller not only has nice properties of the long-range prediction
controller, but'also has nice properties of the pole-placement controlier. Lelicl4] has been pro-
posed a generalized pole-placement controller based on generalized predictive controllJ, but the
pole-placement controller based on non-parametric process models have been not reported yet, In’
this paper, a self-tuning pole-placement controller based on multistep cost function minimization
is propesed for single-input single-output medels described by process impulse response coeffij-
<ients. The poles of the control system (that is, the poles of the controller) can be easily ag-
signed, the computational load of the control algorithm is not larger than corresponding long-
range predictive control algorithm in which the pole-placement technique is not taken. Theory
analysis and simulation studies show that the control algorithm can eliminate the steady-state out-
put tracking error and éffectively rejects a load disturbance and stochastic disturbances.

2 A Self-Tuning Pole-Placement Controller
2.1 Process Model

Consider a linear time-invariant discrete-time process described as follows;
N
g8 = D bk — ) = h(z"Dulk), eh
=1

where y (k) and u(k) are process output and input respectively, hj(j=1,2,---N) are the coeffi-
cients of the process impulse response. As only a finite number of terms (N) is considered, the
_process is assumed to be stable and causal.
2.2 Predictor
When the process parameter. are known, using eq. (1) a prediction y(k-+i/k), & time-step

to fche, future, can be written as. )

gk + 1/8) = hu(k) + hu(k — 1) + < 4 byu(k — N + 1),

gk + 2/ = huCk + 1) + hau(k) + = + hyu(k — N + 2,

e
°
°

¥+ N — 1/8) = hu(k + N — 2) + hu(k + N~ 3) + = + hyu(k — 1).

The above equations can be written in the vector forrm .
Y(k) = HUG) + HU®), (2
where Y (&) = [yt + 1/k) y(k + 2/k) - y(k + N —1/6)]7,
U(k) = [a(®) w(k + 1) = u(k+ N — 2)7T°,
U@E) = [uk — N+ D uk— N+ 2) o u(t— DT,
hy 0 0 e 0 Thy  hy—y  hy—g o By
by By 0 0-, Cm- 0 h’zv hzv'—1 ove ],.J
oo By 0 0 0 - hNJ
Obviously, the pfocess output’s prediction ¥ (k) is the fﬁnction of the future control actions from
time £ to time (E++N—2).

. ° °
® . . cae °
° ° .

N—1 kN——Z kN-3
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2.3 Cost Function
Consider a cost function of the form.
N—1 :
T = Sy + i/&) — rwh + NP + 2@z Dulk + j.— D) @
i=1

where {w(k)} is a bounded reference sequence , 7 is a quantity, A>>0 is a control weighting fac.
tor, @;(z"1) (j=1,2,+,N—1) is defined as follows:
@z =1+ gzt + gz + o + vz,
Q(z™) =14 gz + gz + o + gz,
Qua1(z™V) = 1 + gy_yz7 ¥,
qn—1 9gn—2 Gn-3 °°° /31

0 gv—1 Qqn—2 °*° q2

Ql
I

Now, define

sen

0 0 0 see gy
From Eq. (2) and above notation, the eq. (3) can be written as; ;
J =[HU®) + HUK) — rW & JT[HU ) + HU () — rW (k)]
+ A0 + QU ITTUM + QUK ] . 1)
where W) = [wk + 1) wk + 2) « wk+ N — DT
2.4 Conirol Algorithm -
Assume no constraints on the future control actions, then the optimal control vector which
minimize Eq. 4) is: ,
Uk = (H'H + A D-\[rHW (k) — (H'H + 2 UG ]y 5
we will employ the receding horizon scheme, i.e. among the calculated optimal control actions,
only the first one is applied to the process, and the whole procedure is repeated in the next sam-

pling period, so the control law is;

u(k) = K [rHW (k) — (HTH + 2 QU &) ], (6)
where . KT =[10 e OJ[H™H + A1)V = [k ky =+ ky_1].
The control law (6) generates the closed-loop equation ; :
Pz VDyk) = rh(z")KTH™W (k) D
where P(zY) = 1+ KTH'H + 4 Q [z ¥+ z7¥+%ees 51T (®

It is now required to eliminate the steady-state output tracking error and to arbitrarily assign the
closed-loop poles by selecting the » and Q.
For correct tracking 7 is chosen so that.
P(1) = (DK
that is r = P(D /(DK )
where ' K = KTHT1 1 - 1] '
To assign the closed-loop poles select @ so that:

P(zY) = 1 + K'[H'H + 4 @[z~ "+ z ¥+t 1T = T(z1) (10)
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where the zeros of 7 {z~') are the required poles of the control system, without loss generality,
gssume T(0)=1. Note (H'H) = (hj) v—nx—1>» then (HTHA Q) can be written as:
u+ Mgy—y b+ Agy—p e hy—1 + M

o 0 A . ho—
HH 410 = : 22+.7ﬂq1v1 zzvl.‘*‘ﬁqz ’
0 0 veo hav—na-n + Agw—

Y
1+ [Edbyv—n + 1) + kaChoa—p + M) + =+ + kyoy y—pav—n + Agn—1) J&™! + ==
+ [k (hiz + 2gy—2) + koChay + Mgu—1) 12 + ki (hyy + Agw—D)z ! = T(z M. an

The identity (11) contains (W —1) linear equations for the coefficients ¢;(j=1,2,, N— D,

_ obviously, if k=0, these equations can always be solved for arbitrarily given T(z~!). In fact,

" Iy is an element lying on first row and first array of matrix (HTH 41, because (H*H-+AD)

‘ is a positive-definite matrix, it is not difficult to prove that (HTH- A I~ is also a positive-defi-

nite matrix, so k; is always larger than zero.

If there is a load disturbance d in the process (1), then the closed-loop equation (7) be-
~ comes:

Pz Vy(k) = rh(z"H)KTH'W (k) + P(1)d. ;

- In order to eliminate the effect of the load disturbance, the reference sequence w(%) is replaced

bj\w(k)—wo, w, is chosen so that; .

‘ rh(1)Kwy = P(1)d

 that is;  wy=d.

2.5 Self-Tuning Algorithm

: When the process parameters in eq. (1) are unknown, a self-tuning control algorithm is

~ formed by combining the above control algorithm with the parameter estimate algorithm ;

1) Estimate the process parameters on-line using a recursive least squares algorithm ;

Ak =6k — 1) + ME)P(k)e(k), ' (12)
ME— DG EIME — 1)

| M@ = MG = D)~ T 7 G  DE® (13)
- where e(k) = y(k) — Tk — 1),
Ok = [u(k — 1) u(k — 2) = u(k— N,
8(k) = [y (k) hp(R) += Ay (B ]"
2) Calculate the control action as follows; '
we = LB D
Where ; 7 =P(D/ADE, (15)
WE) =wE) — [11 - 1], (16)

the unknown load disturbance d is estimated by following equation
d =y — I"B6K). an
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2.6 Stability Analysis

About the stability of the self-tuning controller, we have following theorem:

Theorem When the self-tuning control algorithm (12) ~ (17) is applied to the Proceg
(1), the closed-loop system is BIBO stable and the steady-state error is zero.

Proof Substitution of eq. (15)~ (17) into eq. (14) yields.

) 4 T(1)
Tz Duk) = KW () — =<e(®)
D F: ) (18)
where e(k) = y(k) — STk, gy

Since T(z™!) is a stable polynomial , {w(k))} is a bounded sequence and f:(l)l%#O (2(1)1} i
proportional to the steady-state gain of the control system) , according to Lemma B. 3. 3 in [5] ,
there exist constants 0<m;; my<co so that.
lu@) | << my + mymax |e(s) |, 1<tk
1<e<s

and | @@ || < N[m; + my Egle(’:) 1] (20
From Lemma 3.3.61in [5], the parameter estimate algorithm (12)~ (13) has the following
propertles
lim | 68 — 6k — D || =0, A 21
2(k
lim S ) N 0, ¢= Am{ M (O] (22)

broo 1 + c@T(R)P(k)
Consider equation (19), (21)and (22), yields.

&2 (k)
b—>m 1+ @Dk

Note equation (20) and (23), according to Lemma 6. 2. 1 in [5] we know that {u(k)} is a

= 0. (23)

bounded seguence, since the process is stable, so {y(k) } is also a bounded sequence; Substitution
of equation (19) into (18) yields y(oo) =w(o0) by setting k—>oo.
3  Simulation | ‘

In this $e<::ﬁon, a computer simulated examples is used to illustrate the behaviour of the con-
troller provided in the paper, the process considered here is;
y(&) + 0. 365k — 15 -+ 0. 24y (k — 2) = 0 5u(k — 1) + 0. 25u(k — 2) + d(k) + &(k)
whore | 0 = {8, 20 < k< 100,

0, otherwise,
E(E) = q(k) + 0.7qCk — 1)

and (k) <C0. 5 is a white noise, Assume the desired closed-loop polynomial 7 (z~1) = (17
0. 52-1)2, the initial input-output data is set to zero, the parameter esitmates are initialized to ¥~
nit vector, the initial covariance matrix is taken as 10%7, the weighting factor A=1 and N= 3
The input and output response are shown in Fig. 2 and Fig. 1.

From Fig. 1 we see that the algorithm drives the y (%) to track w (%) well and rejects the

stochastic disturbance effectively. There is no static control error observed when the load distur”
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pance occur.
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Fig. 1 Process cutout y(k) and reference w(k) Fig. 2 Control signal
4 Conclusion ’ | -

The self-tuning pole-placement controlier based on longfrange prediction of the process out-
put has both the nice properties of long-range predicﬁve controllers and the nice properties of
pole-placemerit controllers, the closed-foop poles of the control system can be arbitrarily assigned
and the computational load of the algorithm is not larger than the other predictive control algo-
rithm. From the simulation studies it can be concluded that the controller seems to be fairly robust

for load disturbance and stochastic process noise.
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