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Computing Closed Observable Sublanguages Superior to
the Supremal Closed Normal Sublanguage
in Supervisory Control of DES
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Abstract; In this paper, an algorithm for computing closed observable sublanguages is given,
which will converge within m steps (the numbet of discrete events in system). In addition, no matter
how the events in system are sequenced, the closed observable sublanguages got from the algorithxﬁ al-
ways contains the supremal closed normal sublanguage. )
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1~ Introduction

In supervisory control theory of discrete event systems (DES){!J, DES are modeled by con-
trolled automata, and their behaviors are described by the associated formal languages. Control is
exercised by a supervisor, whose action is to enable or djséble events so that the controlled system
generates some prespecified desired languages. In some cases, the supervisor may also be con-
strained to cbserve only events in a specified set of observable events[?], It has been shown that
such a supervigor exists if and only if the language to be synthesized is both controllable and ob-
servablel?], Hence, the formal synthesis problem for a supervisor is posed as one of synthesizing
the largest possible sublanguage of a specified “desirable” or “jegal” language. However, this
largest possible sublanguage is not necessarily unique. Therefore, a slightly stronger version 6f
observability , called normality, has been introduced®. It has been shown that normality implies
observability , and a unique supremal normal sublanguage is guaranteed to exist. Hence the su-
pervisor can be designed to synthesize the supremal controllable and normal sublanguage. In gen-
eral, the supremal normal sublanguage may greatly constrain the behaviors of the closed system.
In order to reduce this constraint, we propose an algorithm for computing observable sublan-
guages. When the events of system sequence in different ways, the algorithm may give different
observable sublanguages. But they all contain the supremal normal sublanguage. Hence, using
these languages for designing supervisor can reduce the constraint caused by the supremal normal
sublanguage , and improve the performance of the closed system.

In the followings, we wili present the iterative algorithm, and prove its properties.
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92 Computing Observable Sublanguage

Let automata G denote controlled DES, X is its finite set of events, and | ¥ |=m. L(G) is
a fixed language over ¥, called the behaviors of G, which represents- “feasible” or “physically
possible” behaviors.

Let LCL(G),L =1L, represent desirable or legal behavior. According toll'2), X'= %, |
Zw=2,J 2., where X, denotes the set of controllable events, X, denotes the set of observable
events, X, denotes the set of uncontrollable events, and X,, denotes the set of unobservable
events. The observable projection Pg)l’*—#):": is
(Do, fo€ X,

2(s), if 0 € Zu

That is, P is a projection whose effeét on a string s€ X* is just to erase the elements of s
which belong to Z,,, so that-P(s) € . The inverse projection of P, denoted P, is Pli(s)=
{t|P@)=s), P"'(H)={s|P(s) € H}, where H is a language over Z,. Given closed L& L
@, itV s, tEL, P(s)=P({); Y 0, ss €L, o€ L(G), =to € L,then L is said to be observ-
able with respect to G and P. Given a language K over X, if K=P 'P(K)[}L(G), then K is
said to be normal with respect to G and P. In other words, given normal language KCL(G),
Y s€EK, teL(@), if P(s)=P(¢), then (€ K.

Considering that X is a finite set of events, we can derive the following algorithm from this

P(e) = ¢, P(s0) = {

general property to compute the closed observable sublanguage of L.

Algorithm Let K,=L, =1,

@ compute (K =K,— {P'P[P7'P(Ko:NK) N Kos LD — K] Ko} Z*,

let K =9(K),

if i=m, then terminate,

otherwise, let i=i+1, go to (D.

Obviously, this algorithm only inerates m steps. In next section we will prove that the K,
is closed observable sublanguage of L, and it contains the closed supremal normal sublanguage of
L. !

Lemma 1 Given language sequence K;(i=1,2,+,m+1) got from the above algorithm,
then K; is a monotonic and reductive sequence, and K; =K, )

Proof According tol3), B—AX* is a closed language (wherfe B and A are the languages
over %), so K;=K;. The reductive monotonicity is gbvmus.

Lemma 2 V s, t€ K, s7t, P(s)=P(t), so1=K3, t01E K,, to1€ L(G), then &0, €
Ka. ’

Proof Since K;=0,(K,)=K;— {P"'P[P7'P(K,01[1 K1) NKio.NL(G)— K, ][N K101}
2, let ‘

K,= K, — KnoZ* : (¢D)
Since s, € K,, according to Lemma 1, s, {€ K, so sol, to,€ Ky01; since to; € L(G@), then
to, € K101 () L(@) ; since so; € K,, according to Lemma 1, so1 € K1, so s01€ K101 N K5 given
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P(s)=P(£), then P(s0;)=P (i), 50 t0, € P-1P(toy) =P~ 'P(s0) SP~IP(K 101 () Ky),
o € PIP(Ki0y [} K1) N Kyo1 [} L(G). o
Assume o1& K, according to (1), o1& K, or t01 € K [} KpnonZ*. :
- @ if 0 § Ky,

from (2) i € P-P(K10, K1) N K101 (VL& — Ky, P(tor) € PLPTP(K101 N KD N Ky,
N L(® —K;]. Since P(so1)=P(io1), so so; € P7P(s0) P 'P[PT'P(K101[1 K1) NEKoN1,
(@) —K,], obviously soy € {P~IP[P~P (K01 K1) ) K101 () L@®—K ]}z, according tq
(1) so1 € KponZ*. Since soy € Ky, according to (1), son € K; and s01& K11012*. Contragdic.
tion | )
®@ it to € K1\ Ko Z*, that is t01 & K,
since € K3, according to (1), (€ K1, t§ Kne ™, that is,
t & Kuon ) Kpon(Z* — o). &)
Since to € Ko Z*, let to, € Koy U Kno (B*—¢), if 0 € Kno(Z*—¢e), then t€ K,
o X", )
Contradiction }
, If i0,€ Kyoy, that is, to, € PT'P[PT'P (K101 N K1) N K101 [N L(G) — K] K101, s0 P
(t0) € P[P~'P (K00 K1) N K101 L(G) — K], since P(s01) =P(l01), so P(to1) € P[P~'P
(K1 KD N K101 N L(G)— K1 ], since so, € P7'P(s01), s0y€ K,01 (proved above), so s01€
{P-IP[P-P K10y N KD N Kot NL(® — K JN K101} 2° 5 that is 501 € KyoyZ*. Similarly,
s01€ K4, accerding to (1), so1€ Ky, so1& K;;01Z*. Contradiction} Se to, & K,012*. Contra-
diction again]
Then to,€ K.
Lemma 3 V s, t€ Kiy1, s7t, P(8)=P (), soi=Kip1, ;€ L(G), (1=1,2,%,m),
then to; € K.
Proof Similar to the proof in Lemma Z.
Lemma 4 VY s, t€ K3, s54¢, P(s)=P(t), so;=K3, v, € L(G), then {0, € K.
Proof Given Ky=2X(K,), let
Ky = Ky — KpopZ*. 4
Assume fo, & K3, according to (4), then o, & K, or 10y € K2 [} K025
@ if to1 & K
Since s,t, s, € Ks, according to Lemma 1, s,t, s0,E Ky Given P(s) =P(), €L
(@), according to Lemma 2, to, & K,. Contradiction |
@ if (01 € K[| K2202Z*
let K33052* = Kpoy|J Knop(Z* —¢), since o1 € Ky0pZ* , i01€ Knop(Z* —e), t0,€ Kz
0.5 %01, 80, L€ KpopZ* 3 Since 1€ K3, from (D), tEK,, t & K,p0,X*. Contradiction] So 1
€K, '
Lemma 5 V j, 1<<<m; V s, L€ Ki, j<tm, 578, P(8)=P(8), if so;€ Kit1y to;
€ L(Q), then to;&€ Kiy1.
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Proof According to Lemma 2, when j=1, VY s,t€ K4y, i=1, s7t, P(s)=P(t), so;
€ Kiy1, t0;€ L(G), then io;€ K;1;. According to Lemma 4 and Lemma 3, when j=1,2, V¥ s,
L€ Kiy1, (JNIK2), s#t, P()=P(), s0;€ Kiy1, to;€ L(G), then ta'jE K.

Assumption (1) ¥ j=1,2,,1, IUSm—1, V s,6€ K; 11 (<KL, 8558, P(s)=P
(&) 905€ Kipr W0,€ L(G), then s0,€ Kips.

It need to prove.:Y j=1,2,,0l41, I+1<<m—1, ¥ s, € Ky (G<i<<14-1), s7i, P
(8)=P(t), s0;E Ky, ;€ L(G), then to;E Ki4,. That is, it need only to prove.¥Y j==1,2,
e i1, I 1Km—1, Y 6,6€ Kipgy 578, P(s) =P (), s0,€ Kirss to;EL(G), then to;E
Ktz

Assumption (2) to;& K2

Given Kiy1=8;1,(Ki+1), let ‘

Kiy: = Kip1 — Kip1,4100012%) , (5

So to; & Kiyy of t0,€ Kip1 [V Kig1,41004:.2

@ if t0;& Koy,

-Since s,t, s0;€ K42, according to Lemma 1, s,t, so;€ K.y, given ;€ L(G), from as-
sumption (1), to;€ K,1,. Contradiction|
- @ if t0,€ K1 N Kipr0010041 2 5

let Kip1,0410012 * = Kip1,0410041 U’Kt+1,z+1lfz+z(2’ —e), if 1<KH<KL, then &0,€ Koy 1410041
(Z*—e)s 0, € Kig1,0410041 2" 05, 80, t € Kip1,410041 2%, But given t € K, 15, from (5),
{€ K4y and (& Kiy1,041004:2 ¢, Contradiction | ‘

If j=Il+1, according to Lemma 3, {o;E€ K,y Contradiction with assumption (2). In one
word, ;€ K45, Lemma 5 is proved. '

Theorem 1 K, is the closed observable sublanguage of L.

Proof According to Lemma 1, K,4is the closed sﬁblanguage of L. According to Lemina
5, VI<{j<m, V s,8€ Kny1, s7t, P(s)=P(), if s0;€ Kay1, to;€ L(G), then ;€ Kty
which is consistent with the definition about closed observable language. Hence, K,y is ob_s,erv-
able.

Let K, denote the supremal closed normal sublanguage of L, and K, denote K,,,. We can
get the following theorem. ‘

Theorem 2 K.CZK,,. .

Proof Assume K,JZK.,, since ¢€ k., I s0: & Ko, but s0;6€ Ko (1<Ki<lm). Since K;=
L, Ko&L, so

_ Ku S Ky (6)
Given Ky=Kut1s 50 s0.E K1, 6;& Kpnyyo Given ,
Kj+1=Kj—ija',:Z7*(1<j<m), (7)

we can let s0;€ K;, s0;& K113 From (7), s0,€ Ky0;Z*; According to Lemma 1, K;=XK;,
3 t,t0;E€ 501, and ¢,t0,€ K;, L,E K;, 7, P(L,)=P(@), t,0,€ L(G) such that
toa'j & Kj. (8)
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Since s, Koy Ko K.,, 0 to;€ Ko, and since P(tgo;) =P (to;) y Ku is normal , then

t0; € Kas 9
from (6), to;E K;. According to (8) and (9), let £0;E€ K, t0;& K ;41 (1<j1<7), then b,
€Kiy ponZ* s let boj=tw;; X uooj; Since Ky=Kj, t, t05 € Ky, I 1€ Ky, tuskt,, Py
=P(t), tnony € L(G), such that t1o;3 & Kj;3 From (9) and K =K, t10',16K.,., Since P(t
0) =P(ti071), 0 11;0,€ Kas t101 € K1,

Similarly , let {1,051, € Kjz» tn0n & Kjz41, 1j2<<jl, 110 € Ko, 202" tllojlg‘izgjzulgﬂ,
bys 10206 Kjps 3 122€ Kjgy bypFlys P(le) =P ()5 10€ L(G) such that 0, € K, tézo’ZjG
Ky, ceecor Prqcced in such way, since j<{m, within msteps, 3 40;& K, (204,E€ Ko, oy € K|,
A=2, so ty0:€ Kno Z*. Similarly, t,0,==s0012102, 3 sc€ K1, S00705> P(s00) =P (sq), S000
EL(G), s0o1& Ky; But since so01€ Kauy P(5001)=P(s50001)s Koo is normal, so syo, € K.

Contradiction] Hence, K, K. '

The following example can be used to illustrate K, K.

Example Let = {a,0;,03,0:) s Zo=1{0a1,03},

and L(6)="CoF asT oo+ az T oo,

L=se+ o+ a5+ a4+ 050 -+ ay0n.

Obviously, L=1L. From the algorithm, get Kn4+,;=L, that is K,=L;
Ko=t+as+ a5, 50 Ko C Ko

Theorem 3 If L is a closed observable language, no matter how the events in X are se-

quenced, then K,y 1=1L.

Proof The theorem can be easily proved by proving its inverse proposition.

Proposition 1 Let K=K, KCL(&), then -

K (Ko ) PPPLAL@® — K) () Ko]) 5
=K {P7'P[P-'P(Ko N K) N Ko N L(G) — K] Ko}Z*

According to this proposition, we can substitute Q(K,) = K;— {K0:(\ PT'P[(L(®) — KD
K]} Z* for the old one to simplify the algorithm. L ' o
3 Conclusion

The language K, got from the algorithm is not unique. Because the events in X may be se-
quenced in different way. In addition, this algorithm keeps the regularity of L. Since each kind
of operation concerned with the algorithm keeps the regularity of its language. It is an obvious
advantage that this algorithm is not involved with analyzing and provihg convergence.

Future research tasks might inctude finding aigorithm to compute maximal observable sub-
languages which contain the suprema.l normal sublanguage and developing method to cmnpute the

controllable and observable sublanguages by makmg use of this algorithm.
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