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Abstract: This paper studies the robust stability problem for plants under structured and unstruc-
tured perturbations. Our goal is to obtain the unstructured periurbation bound for a class of plants.
Our results are nontrivial extensions of those in [1].
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1 Introduction

In the design of robust controliers, there ‘are at least two types of system uncertainties(?],
one is modeled as structured uncertainties, which are represented as the variation of parameters
and suitable for describing high frequency uncertainties. The other is modeled as unstructured un-
certainties, i. e. , a nomial plant is given and the perturbations are restricted within a norm-
bounded set. This model is suitable for describing low frequency uncertainties. These two types
of models were studied independently in the past: Only recently are there papers dealing with per-
turbations of mix-typefl~31,

[37] proposed a new model which contained both the above-mentioned types of uncertain-
ties: A nominal plant, whose structured uncertainty is represented as proper rational matrices, is
given and it’s subjected to unstructured perturbation which is additive or multiplitive. . And [1]
gave a method to campute the robust stability unstructured perturbation margin for such new
models. '

Notice that in [1]] the structured uncertainty is represented as interval matrices, which can
only describe a small class of uncertainties, because the coefficients of the interval polynomials
are required to be independent. In general, these coefficients vary dependently in a given poly-
tope, and this class of uncertainties can be represented as polytopic matrices(*5), In this paper,
the nominal plant is given as a family of polytopic matrices. Our goal is to give a simple method
to compute the robust stability margin for such a nominal plant under additive perturbation.

- Throughout the paper, all systems are assumed to be single-input single-output. The proofs

are given in appendix.
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2?2 Preliminaries
Given two polytopes N and D, NCR#!, DCR¥!, consider following families of polytopie
polynomials .
N(s) = {n(s):n(s) = ng + ms + o= F a7, (ngy=,0)T € N}, @10
D(s) = {d(s) :d(s) = do + dys + =+ + 4, (do,++,d)T € D} 2. 2)
Corresponding to the extremes of N and D. there exist extremal polynomials N,(s) and D,(s), i.
e. , the polynomials in N (s) and D(s) whose coefficients are extremes of N and D respectively,
So corresponding to the edges of N and D, there exist edge polynomials N.(s) and D,(8), i. e.,
the polynomials in N (s) and D(s) whose coefficients belong to the edges of N and D respective-
iy.
Let A= N X DCR#H+2, notice 4 is also a polyiope. Consider a family of Plant transfer
functions ; ‘
6= (90 = 32 .0(5) € N(6) () € D)9 < 5 (s o sty 580" € 4).
2.3
We define the edge plants of G as follow;
JON
We call a polynomial stable, if all its zeros are in the left half plane. It’s well-known that

Go = {g(s) = 1(s) € N.(s),d(s) € Do(s)}. 2.0

when we want to check the stabily of a family of polytopic polynomials, It’s sufficient to check
the family of its edge plants.

Lemma 2. 117 Suppose N in (2.1) is a polytope, then N{s) is stable if and only if N (s)
is stable. .

The lemma below transform the problem of computing the iaxgest perturbation bound into
the problem of checking the stability of a family of polynomials, which is the basis of this
paper.

Lemma 2. 511 Suppose g(s)=n(s)/d(s) is a proper rational stable function, deg(d(s))
=g. Then ||gllo<<1 if and only if

i) |ng|<<ld,|» where n,, d, are the coefficients of &' in n(s) , d(s) respectively.

i) d(s)+er(s) is stable for all 6€ [0,2x].

Finally, the following lemma plays a crucial role in-the proofs of our main results.

Lemma 2. 3171 suppose T is a linear transformation from R* to R™. 4 is a polytope in R%

then T4 is a polytope in R™ .
3 Main Results ’ A
Suppose a linear time-invariant SISO plant is given, its
transfer function is g (s). Consider the case when the plant is . ap
subjected to perturbation 4p without feedback lcop (Fig. 1). In Fig. 1 Plant with unstructured uncet
tainties; witnout feadback

6] there exist such a result.
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Lemma 3. 1081  Suppose g{s) is a proper raticnal stable \ co +
g < b

tansfer function, then for all perturbations A4p satisfying +

ll4pllo<a, the closed-loop in Fig. 1 remains stable if and only

if S}

a < ||4¢l1Z 3.0 Fig. 2 Plant with both unstructuted
and structured uncertainties;
In general, there exist structured uncertainties in the plant without feedback

itself. Suppose the structured uncertainties are reprensented as (2. 3). Then we have this
result . »
Theorem 3. 1 Given a stable proper plant Gy (2. 3), for all perturbations Adp satisfying
[14p]le<<a, the closed loop in Fig. 2 remains stable if and only if
a << 1/ (max||glls). (.25
€6,

The above theorém treats the case when controllers are not taken into consideration, when a
fixed stabilizing controller for G is connected to the plant, we can get the following result.

Theorem 3.2 Given a strictly proper plant Gy.(2. 3) (no necessarily stable) and its stabi-
lizing controller ¢. For all perturbations Ap satisfying |

Apllo<lars the closed loop in Fig. 3 re-
mains stable if and only if
a<< 1/:23xuc<s><1 + 9()e(8)) o (3.3
§€Co,

Finally, we consider the case when the stabilizing con-

troller is also under perturbations. We assume it has struc-

tured uncertainties described also by a family of polytopic
matrices, i.e. ,
n(s)

do(s) Fig. 3 Plant with both unstructured and
do(8) = dog + doys + +o+ + do” structured uncertainties ; with feedtack

(Bggs *>* s gy s Bags *>* 58,)T € B (C R7+¢+2, B is a polytepe}.

Co = {c(s) ="

:nc(s) == Mg + RS + eco + nvgsp',

+

AP
(3. 4) } .
. +
We can also get the edge controller €, of C,, We have; -“‘:%L” g€ G e

Theorem 3. 3 Given a family of strictly proper l
plants Gy (2. 3) and a family of stabilizing controller C,

(3. 4). For ail perturbations Ap satisfying || 4p|lc.<Ca, the Fig. 4 FPlant with both unstructured and struc
tured uncertainties ;controller with struc

closed loop in Fig. 4 remains stable if tured uncertainties ;
a << 1/ max|e(s) (1 + g()e(8)) ™ Hcoo (3.5)
9E€Gg, .
c€Cy,

Noticé in theorem 3. 3, only sufficient condition is given.
4 Conclusions

This paper considered the robust stability problem for plants with structured uncertainties un-
der unstructured uncertainty pertufbations from three different cases and obtained the robust sta-

bility margins, which makes it possible to compute the unstructured perturbation bound for a class
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of plants. The results are not only suitable in SISO case but also in multi—input'single—output and
single-input multi-output cases. Furthermore, we can consider the case when both the polytopie
plants and the polytopic controllers are subjected to unstructured perturbations.
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Appendix
A Proof of Theorem 3. »
By Lemma 2.2, rrgx||g||x<a" if and only if d(s)+ae®i(s) is stable for all g€ Gy and 6€ [0,2%]. Let
<G

n(s)

d()EGO} for all @ € [0,27]

= {d(s) + ae”®n(s) :9(s) =

and let T be a linear transformation from 4= E\:I to D+ae®N. By Lemma 2. 3 T,4 is a polytope and its ex-

tremes are T.4,, Where A, is the set of extremes of 4. Thus M. is a family of polytopic polynomials. It’s easy to see
that its edge polynomials are

M = {005) + a0 19(s) = 33 € Gu).

By Lemma 2. 1, M, is stable if and only if Ma is stable. So m&lxllgl]m a~! if and only if maxllgll <a™'. And
by Lemma 3. 1 we can complete the proof.
B Proof of Theorem 3.2
. -1 n.(5)d(s) . -1 1
Notice c(s) (14g(s)c(s)) = atoIn(s) T 0L by Leinma 2. 2, |lc(s) (14+g(s)e(s)) " Y|<la™! for

all ¢(s) € Gy is equivalent to that n(s)n.(s) +d(s)d.(s) +ae’n.(s)d(s) is stable for all 6& [0,2n] and g(s) €EGo.
Let

= {n.()d(s) + de(8) + ae®n.(s)d(s) :9(s) € G.}.
Because ¢(s) is fixed, the coefficients of the polynomials in R, can be obtained by the coefficients of the polynomar-
Is in Gy by a linear transformation. By Lemma 2. 3, Rs is a family of polytopic polynomials, and its edge polyno-
mials are
= {n(s)d(s) + (d-(s) + e’n(s))d(s):9(s) € Go} A
So by Lemma 2. 1, R, is stable if and only if Re is stable. Therefore %Hc(s)(1+g(s)c(s))"||m<u‘1 if éﬂd
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only if ﬁemaxllc(s) (14-g(s)e(s)) " -<a™. Also by Lemma 3. 1, we complete the proof.
€%,

C  Proof of Theorem 3. 3

Before we prove theorem 3. 3, we need a lemma. Its proof can be found in the appendix of [5].

Lemma A. 1] suppose ACR*, BC_R™ are polytope. f:4XBCR**"—>R" is a bilinear mapping. Let v be
the set of all extremes of AXB, then

conv[ £(4 X B)] = conv[f(v)]

where conv[ 4] denotes the convex hull of 4, f(4) denotes {f(a) :a€ A}.

Now we prove theorem 3. 3. Notice in the proof of theorem 3. 2, if ¢(s) is not fixed, then Ry is not necessar-
ily a family of polytopic polynomials. But since Cy is a family of polytopic matrices, it’s easy to show by lemma 2.
2 that

&(s) + aen(s) d.(s)
is a family of polytopic matrices ad its coefficient polytope is a linear transformation of the coefficient bolytope of
Co. So by Lemma A. 1, conv[Rs]=conv[@wC.], that is to say, the convex hull of R, is a family of polytopic
polynomials, and its edge can be determined by Go, and C,(or Cy,). The rest is similar to the proof of Theorem 3. 2
by substituting conv[ Rs] fot Rs.

o = { 1.(8) . () € C’o}
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