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Variable Structure Robust Control for Uncertain MIMO
Dynamic Systems”

WU Yugiang and FENG Chunbo
(Institute of Autometion, Southeast University «Nanjing, 210018, PRC)

Abstract; A design scheme. of ‘variable strixcture control for uncertain MIMO systems which uses
only the input and output measurements is presented in this paper. A strictly positive-real model is in-
troduced into the control systemn, The stdte variable filters with proper logic switchings is used to per-
form the variable structure control. It is proved that a sliding mode control can be achieved and the
global stability can be guafenteed. And the tracking error tends to zero exponentially., The design
scheme is shown to be robust to structured and unstructured uncertamtxes. Slrnulatxon results show the
effectiveness of the proposed algonthm ’ ‘ ;
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1 Introduction

The variable structure control (VSC) was first studied in the 1960s{} and was developed
_greatly in [5]. It has attracted the attention of many researchers-in both theoretical and applied
fields. Systematic studies showed that the variable structure control: possesses:good robustness
{2~7], 1t is well known that when the sliding mode is achieved. the controlled systems are insensi-
tive to the variatiens of system parameters and independent disturbances. That is why the vari-
able structure control is robust. But usually all state variables should be used to achieve the sliding
mode. If some state vanables are maccesslble , theoretically we can use an observer to reconstruct .
all state variables and then use the latter variables to pérform the sliding mode. However, system
state vanables can not be accurately reconstructed if the system parameters are not accurately
known. That is to say, the sliding mode control via a‘ state variable observer is sensitive to pa- '
rameter variations and is therefore not robust. If there are also structure uncertainties besides the
parametric uncertainties, the problem will be even more complicated. In general, it is not clear
how to.design sliding mode control-for some systems with structured and unstructured uncertain-
ties. Therefore, it is evident-that the design of variable.structure control for uncertain dynamic
systems by using input and output measurements is a very attractlve topic for research.

The application of VSC in model reference adaptive control (MRAC) has also been studied.
The earlist work can be traced back to Youngm. Later, Ambrosino, et al, desxgned a vanable

structure model reference system in the absence of unmodeled dynamicst’. Balestrino, et al, also
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applied the VSC to the adaptive controll®], However, no substantial results on this subject have
been obtained as yet, especialy in the presence of unmodeled dynamics.  The other applications of
VSC in self- tuning and adaptive control has also been studied .in. [ 47]. and. literatures cited
therein, . : ; o

In some recent paperst®~1%], model reference adaptix)e system combined with variable. struc-
ture control is in'troduced into the design of control system, and variable structure model reference
adaptive control using only input and output measurements is also being considered.. However, in
papers [ 9~ 137, only the minimum-phase systems are considered because. their design are based
on the Narendra’s control scheme. S.V,Emelyanov,. et al, proposed a. vairable structure control
scheme for an uncertain system described by a state variable modell*), However, in its design the
state variable coefficient matrix of the modeled part of the plant is assumed to be known and to be
of minimum phase. '

There is no doubt that the robustness.of feedback conirol systems can be lmproved by, intro-
ducing the variable structure schemes with appropriate logic switchings.

In this paper, a desxgn scheme of variable structure. ¢ontrol which uses only the. 1nput and
output measurements is presented. The controlled plants contain both structured and unstructured
uncertainties, and the system can be of non-minimum phase. In our;design, a strictly positive-
real model is introduced .into the control scheme. The state- variable filters with proper logic
switchings are used to perform the variable structure contorl.. It is proved that the sliding-mode
control can be achieved and the global stability can be guaranteed. The results of simulation show
the effectiveness of the proposed method. i

' - The outline of this paper is as follows; In Section 2 the deseription of ‘the system is given.  In
Section 3 the design scheme for multi-input and multi-output (MIMO) systems.is discussed. - Sec-
tion 4 gives some. results of simulation. Finally, in Section 5 some concluding remarks are
given,

2 - System Description
In this paper the controlled plant is described as

Yo(@) = G(s, DU = Go(s,a)[1 + mdl(s,a)]l/(t) + W(s);bzAz(s,a)U(t), @D
where Yo(8) == [961(8) s902(8) 5 *=* s 90 (OO I, U (8D = [ (8) u5() , oo su, () ]T, Go(s,0) =Dg (s,
a)No(s;a) denotes the modeled part of the plant. In general, Do(s,e) and No(s, ) are assumed
to be pXXp and pX¢ matrix polynomials in s for every a. 4;(s,a) and 4; (sye) represent the
multiplicative and additive unmodeled. dynamic matrices ‘with: approparite dimension in the,eys-
tem. @€, £ is a bounded region. x; and u, are positive constants. Eq. (1) describes a multi-
variable system with ¢ inputs and p outputs. - For this system we assume;

Al) Go(e,a) is.a strictly proper rational matrix in s for every a & Q..

Go(s,0) = Dyl(s,a)No(s,0),
Do(sya) = 15"+ 4(a)s !+ oo 4 A(a);
No(sya) == Bo(a)s* ™! + Bi(a)s" 72 + o0 + By (a) .
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where 4;(a)’s, B;(¢)% are pXp, pXq constant matrices for every a€ £, respectively.

AZ) A{(s,e)and 4,(sya) are stable and causal operators. If 4;(sya) is linear and tlme—m*
variant, then we assume that exists @ >0 such that 4 (s— @, o) is stable for every aE .59 1
4(s,a) is a nonlinear and time-varing operator, then we assume [|4(s, U (D[ <KallU (O] for
every o€ QG=1,2,6=>0).

A3) W(s) is a stable and strxctly proper ratlonal pX p matrix in s:

“‘For'simplicity ; in the following diseiigssion; we use the’ abbreviation” Gy for Go(s,a) s ‘and
similarly for others functions. The parameters of Gq are unknown, but-are uniformly bounded, for
“all'é. Gy may contain Unstable poles and unstabie zeros. - The purpose of the present paper: is to de-
sign'a variable structure controller by using only the input and output measurements such that the
output of plant will be bounded and track 4 referencé output ¥, (¢) where Y, (t) =W, (s) 7(¥).
Here W,(s) represents a stable reference model, and = (¢) is a uniformly bounded external input.
In‘genéral, for system’(1), the difnension of input is different from that of output (p5%¢). For-
simplicity of design we try to'make the dimensions of input and output be equal. For this purpose
the following measures will be adopted; e v
2.1 p<<lqo

In this casé, (g—p) augmented outputs will be introduced. Let

10, = (s + a) (s + V@), G=p+ Lip+2,0¢.a> 0,6 >0),

To() = [rar() s+ 13058 s 90,51 s+ 4 (D T ~ ‘ '
where u;(¢) and y,;(¢) are the jth components of U(¢) and Y(t) respectively. When j=>p, 7,;(¢)
is the augmented output. Define N SR

Di(s) ‘= diag[1/(s + a@)*; ==+, 1/ (s + ad*], Dil(s;a) = diag[Di'(s,e),D71(s) ],
CNyGs) =0, m()1],  No(s,e) = [N, N{(s)T, G
where I is a (g—p) X (¢g=p) unit matrix, 7,(s)= (s+a;),—1. From (1) we have
G(s,a) =diag[Di'(s,0) , D7 (s) [ Nf(s,a), N}‘(s)]Tl + i (s,0) ]
+ [ () da(s, )Ty (— DTSN () (s,0)T]
=Dy'No(I + md) + Wy,
Fo(®) = Go(s, DU () = Dy'No[l + mH JU®) + W AU (E) : L 2
where
W(s) = diag[W(s), ((s + al)"”‘l/(s + O, dy = [Az(s,a) ([0 11]A1(a,a))T]T
This shows that if p<q, the system (1) cafi be transformed into (2) with the same dimensions of
input and output by introducing (g-— p) augmented outputs which are independent of the original
outputs of the plant (1).
2.2 p>q
» In this case, (p— ¢) augmented input variables will be introduced, such as u; @),
Ug2(8) 5 o00 (6. Let T == (1) 5 o= 1, () 5 o= ,u,(8) |7, we have
Yo(8) =Dii[ N, 011 + mdiag[4,,07]T) + wW [ 42,0100
ADFN [T + mA T @) + wWAU (@), ‘ 3
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Now the dimension of the input of system (3) is the same as that of the output, and the transfer
~ function matrix from Lagt1(8) 5 o+ s u, () TF to Yo (8) is a zero matrix.. It is obvious that both the
system (2) and (3) satisfy the assumptions A1) ~A3). :

Interactor matrices play an important role in parametrizing MIMO plants for the studies of |
MRACUS8], Literature [17] proposed the concept of modified right interactor (MRI) ‘matrix for
plant parametrization. In paper [117, the MRI matrix of Gy is assumed to be known, In addi-
tion, the method given in the litérature [117] is valid only when the dimensions of mput and out-
put are equal to ‘each other, In our design, less priori informations about the modeled part of the
plant (1) are needed. For example, we do not need the knowledge of the MRI matrix of Gy

Definition 2.1 For MIMO plant (1), in assumptxon Al) y let Bo(a)—(b(")) If |65 >

2 165 | for every aG 8 (==1,2,,p), then By(a) is said to be umformly stmctly row diago-

nally dominant matrix. By(a)is called the ‘gain matrix:of the plant (1).

In the subsequent discussion , the: following notations will be used,

1) || Absolute value of a scalar or a scalar function.

2) [+l Euctidean norm of a vector, or the norm of a stable rational operator

3) [2]; Element of matrix X in the ith row and jth column,

4) [#]; - The ith component of vector b

5) (Bij),xq The pXq order matrix, ;

6) A(N) Root of polynomial N (s) or the root of eigenpolynomial.
3 Design Scheme of VSC for MIMO System

In this section, we will introduce a strictly positive real rational matrix function W,(s). The
main contribution of this section is that a VSC &cheme is glven ‘with consideration of unmodeled
dynamics. Moreover, our resulis are still valid when Gy is a non-minimum phase system. In.the
following discussion, the demgns will be glveu for tw0 dlfferent cases» i) Byisa umformly strict-
Iy row diagonally dominant. i) Byis a pos;tlve or negative deﬁmte matrix.,

i) By is a Uniformly Strlctly Row Diagonally Dominant

For the simplicity , in the sequal, only _*® [~ W e o
the case where p<Tq is discussed:' In'this P @)
case, we assume that the sign of elements g : o m 2O F R ik
b8® of By are known (i==1,2,%,p). The W
principle of the control scheme is shown in vse *
Fig. 1. ' " Fig.1 The control scheme

Now H(s) =W (X[W,()%, 0T, where W,,(s) = kxN () /D, (s) is a strictly positive real
rational matrxx function in' s, and &, is a’positive constant. D,(s) and N,(s) are gwen by

' D, (s) == diag[d(s), dy(s), ey (s)], R W)

N, (s) = ()], . L B B (B

where d,(s), d2(8) 570+, d,(s) are monic stable polynomial whose degree are n; I(s) is a monic
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stable polynomial whose degree is (r—1)3 I is'a ¢ X ¢ unit matrix. Denote D (8) == Is* -
D,s* 2 ess + Dy, and let R(s)=D,(s)—Do(s,a), then R(s) is a‘matrix‘,po_lynomial with degree
less than a. Define o
: F@) = H&Or®), Y. = [1,,0]7.),

then we have ¥, (¢) =W, (s)7(t). The augmented tracking error is given by

EEE-TOED TORED SION , (8)
It is easy to see that eq(t)=[1,,0]e(¢). From D,.=Do-+R, we have
Fo(t) = Di'Nol/ (¢) + D7 RYo(t) + mDy ' Nodw(t) + uDi DWW A (). (7

Since Nn(s) =1(s)1, it is commutative when any. rational matrix mutiplies it from left or right.
Hence, Eq. (6) can be rewritten as follows; '
2o(t) = kuD N[ ku 1NON"‘U(t) + ETIRNTY o (8) — F + wkn Ny YN U (8)
4wk N D A (1) ] ' (8)
Let 1(s) = &1 A U= b Lt o A hoy A ST 10 (), '
No(ssa) == Bes*™! + Big#=! 4 oo + Byy,s
Bi= [0 Jgxg» (G ="1,2;,0),
then Bo=[B5, [0, I;]7]%. Hence, we obtain
[N NFUO ) =50 0u + k7 bPuy oo+ BB
+ kB PI(s) (— 1 (8)dug + oo + k;‘big’l‘l(S)(" 1* (s,

q L [
+ BT O6P8 2 + k() (O b))
: ‘ =1 j=1 '
g
+ e k;lz—*(s)(Ebg"Du,)‘
‘ mkglb Puy + oo + k10 >u,,+ iy 1Z(b(1) — b§ >ll)z~'1‘(s)sﬂ~2a,

. q .
o kD D — BPLDET ()
‘ = , ,

Dk 10Pu; + oo 4k 'bfPu, + 6PTefP (), &)
where 00 = KB — bQUL,BP — bRl e b — BPlyy e ,bfV — bl TT,
P () = IS [ %y, 8" zuz, O - T et PRI e VARTEIN PR ED 2ltg | T
As in (9), the first component of k; 'RN7'¥,(¢) is denoted by
[ 'RNZ'To(0) ]1 = 6P (),
where of (1) = ([ Wors *= 58 Yogs " Eyors 200 s 8 HYogs o0 s Y15 o0 sYog ] "
In Eq. (8), let 7, denotes the first component of 7(¢), and let .
| [k 'N N U (0 ]y & ki U1(s) (A{Puy + oor + 4{1P0)
gk !Nz D 4.0 (D 1 £ gk 17 (8) (4 Puy + oo A 450
where A{9 =[N Ty, 457 =[DW4,]y;, then it is obvious that the i~ (s)4{'” and I} (s)4§'P
are causal operators. Define ‘

61 (007,60, 1T, of A [of",0f? 7T, .
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then in Eq. (8), -the first component of &,(¢) can be written by 'k
eq =kl 1(8)1(8)[70 B{Pu; + oov kxb{Pu, + 67wy — P : :
+ k0 () (A Duy - Af0yy 4 ;tzk““l"’(S) (Aé“’ul + e - AfOu) ]
Ak“‘dl U(s)u, o ‘ S0
In general, for 1<<{p, we have o
o =k () 1(s) [k b Ou; + B of0u A oo - BB e bR uig
+ e+ BT00u, + ks 1(s) (AP ooe My) — 7
+ 2k U () (A Puy - oo A:S“’u ) + 6] ~
AV OUOT R B ooan
- where ' ' ' ‘
u' O (0% + k7 %f0u; + - i al RS ’0 B Prtipy + e 4 By o u,

T BT (AP + 4000) + kU1 (8) (US0uy - e - 45u) + 6Fax — 7,
ofP = oD, w,(z)—co(’” ‘o=, o®, 7' And when P<i<<q, bP=1 and b®»=10. The
state-space description of (11) can now be written as follows; ‘

i = A’z + bru?,

{ai ,
let Alding (47, a5, e, 40, zz;;cnag(b1 , b3y ey B2, and og;dnag(cl y oty »-~? W,
then the minimum state -space reahzatnon of the augmented trackmg etror model ( 8) 1s ngen by
(%= Az + Bu*, ‘

{ = 0%z,
where u* (¢) = [uf (¢), ug @)y woey u} W1 2 =z )y z(t), =, 2,(#)T. Since
1(s)d; 1(.sz) is a strictly positive real transfer functlon, there exist positive definite matrix; G;.and
@; such that : ‘

‘ (12)

as

ArTG; + GA" = Qi" -Gibi* =

Let G=diag(G1, Gz, =+, G,), Q=diag(Q,, @y, «, Q) then we have
AC+CA=—¢Q, oB=10.

For Eq. (13), taking liapunov function

V(zy = (1/2)2Gz, - ' : . CCEE4)
we obtain , : ~ V(2) | sy == 7Qz 4 efu*. : doeen(15)
The variable structure control law is given by

(s~Dg

%(0) = — sgnex(DsP) 2 P [of1P] 4 Zk@wwsw; + kolni])

- ksgn(eo,(t)b(m) - Sgn(em(t)b(O))(Muml @) + Mygmy(8) + M), (16)
where k, kD, k®, M, My, and M, are some appropriate positive constants; wfid == [m.ﬂ)] oy
o =[o®7;, my(¢) and my(¢) are determined by the following equation ;

W (6) =— Bumy(t) + B |uy(6) | + Baslua(8) | + coe Bal (D | + ,3;,, ST
where By<min{as, 4}, Ag=min|ReA(I(s)) ['s- By and B are some positive constants (h==1,2;
J=1,25%,¢). Let
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() & Il“l(s)ZjA‘"’u,)t, RO\ ll-l(s>§__‘;agwu,) l.
From the assumption A2) in Sectu:n 12 when thé parameters f; and jﬁ; are appropriately chosen,
there exist pf >0 and i >0, for 4 € (0, ut) and p€ (0, #), such that
pik O () << My (8 + Mg + mdi (| + o] + o + Ju ),
/ ek 0@ () < Magma(8) + Mg + p8: (1w | + lug| =+ oo+ JugD.
Since oD =pf == o), and ofP =P =- =P, we obtain
Ly | < gl koIl + ol 75l
According to the above analysis, if the parameters in the control law (16) and (17)’ are chosen
appropriately , we can prove. that ' ’
: o eot <— pilenls - (18)
and thus vé}u'* < — pile] — 5000y = poleggls ‘ as

‘whete, pis are positive constants. Therefore, -the. following result is obtained ;
q
V(D asn <— 2@z — ijleo»‘[- A 20
=1 ~

From (20) and (14) it is evident that [|z(¢)|| decreases at least exponentially. Therefore, from
(13) and (6), Ileo(t)ll and |leo(8) || also tends to zero exponentially. Moreover, the exponential '
stabnhty of “z(t) || and Teo(t) || are independent of the external excitation 7 (2. Owing to the

strict positive realness of d“(s)l(s) we have ¢ Th* >0 Then from (18) we have
A/ a-z(eﬁ.-(t)) =eq (1) (e TAz + ¢ Tbrut)

< e | ez Allllz(O || + ¢ ™b e(Dud < (e(®) — p,c,”b ) lew! s (21)
where £(¢) tends to zero exponentially. Hence, there exists #>>0 such that ‘

(1/2) (b <— p lew® | e

for all t>v (=1, 2 ,+00 5q). Therefore, from (22) we can see that the sliding surface gg==%z=
0 is guaranteed to be reached in {>>7. ' .‘

When the sliding mode is achieved, the equivalent control can be calculated by setting &¢(¢)
=0 in (13). However, in practice, the equivalent coﬁtrol can not measured on-line due to the
structured and unstructured uncertainties of plant (1). In implementation, the average control
obtained by using a low-pass filter (such as, for example, i (8) == (L/ (r8-+ 1))u:;(4)  with suffi-
ciently small time constant ;. may be used instead of the equivalent control on the switcing sur-
face. k

From eq() =Yo() —Y,(¢), and the uniform boundedness of Y. (), we obtain

17O << leo O]l + 17O < M. (23)

In conclusion, the global stability of VSC system with control signal 4(¢) defined by (16) and
(17) can be proved by the Liapunov function method.

The' above results obtained for MIMO systems now can be summarized it the following theo-

em.
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Thercem 3.1 For the MIMO system (1), if the dimension of input g is greater than that
of output and the assumptions A1) ~A3) are satisfied, and the gain matrix By of the plant is
strictly row diagonally dominant and the sign of the elements b{> of B, is known, then thetre exist
uf >0 and pf >0, for 4, € (0, p) and €& (0, ,w; ), such that the closed-loop system is glob-
ally asymptotically stable and the sliding mode control is achieved when the ‘VSC‘ law 17 () with
appropriately selected parameters is given by (16) and (17) and the strictly positive real model
W, (s) is taken appropriately.

ii) By is a Positive Definite Matrix (p=¢) (or Negative Definite Matrix)

In (1), let Do(s)=B5Do(s) , No(s)=B5'No(s) , then (1) can be rewritten in the follow-
ing form, : :
Yo(6) = Dr()No() (I + mdDU @) + WU (t) L@

Let Du(s) =d(s)1, Nn(s)=1(s)I, and B(s) =By'D,(s)—Do(s), then () can be glven by
eo(t) ——Ic (BilD,): -1y [k"lNoN W) + k7 'BENg lYo(t) — 7+ ,ulk NS lNoAlU(t)
Uk N IDQWAzl](t)], Soitr P o (25)
where d(s) 1(s) is a strictly posxtxve real transfer function. Since Bj!is a pos1t1ve defmlte ma-
trix, ¥,(B5'Dn(s))Nn(s) is a strictly positive real tranfer matrix. The following discussion is
similar with the case i) since Ny(s) ==BjiNy(s). We omit the mampulatton and glve the follow~
ing theorem. ‘ s
Theroem 2. 2 For the MIMO system (1) ’ 1f the dxmensmn of 1nput 1s the same as that of

’oyutput and the assumptlons A1)~A3) are satlsfled and the gam matnx Bo of the plant 1s a posl—
tive or negatxve deflmte matrxx, then there exist /tx >0 and g7 >0 for /416 (0, i ) and }Lze

“( 0, 13 ), such that the closed- loop system is globally asymptotlcally stable and the shdmg mode
control is achxeved when the VSC law U (¢) with appropnately selected parameters is glven by
(16) and (17 ) and the strlctly posmve real model W (s) is taken appropnately k '

4 Slmulatnon Results
In thlS section the performance of the proposed VSC scheme wﬂl be 111ustrated by sunulatlon
example. :
Example An MIMO system with Bo to be strictly row chagonally dominant is considered.
In the plant (1), let

D0(8)=r32+1.93~0.2 s-i—l’ "|’ Ng(s)=rs+l O.ls+1’|’

L0 etoss—02l T pate cqs )

[/CG+a) 1/¢s+ DT TG+ a) 1/(s+7D]

b+ vetal” T 161 et a)’

W (s)=diag[1/(s+3), 2/(s+5)], m=1p=0. 2, o = ap = 20. We select the companson
model as W, ()= (s+3)/(s?+3s-+2))]. The external input signal is taken as » () = [ (1/2)
sin(5¢) 5 (1/6)cos(2¢) J%.: In the control law (16) and (17) , the constant parameters are chosen
to be k{’)“‘zi ké“‘“o kfz)“k§2)—“3 2, P =kP=3, k= 4 Mn--Mw——Z 5, M13--—2 Ico—-— :
3. We take m(t) =m(t) (i=1,2), here m(¢) is given by the following equation ;

4,(s) =
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S : () = 2.9m(@) + 3|u) | + 5. ’
~Fig. 2, Fig. 3, Fig. 4 and Fig. 5 show the tracking error and the variable structrue control sig-

nals::
o .
a i ; ; 0 i J//‘\T\
: o N 2 4 6
i . .
; ~0.5
- b 5 T gy 3 1
Fig. 3 The tracking crror egz(f)
408
201 ‘ ”]
‘ : Al
/ .,.ll‘l L _
‘ ] 13
| “i e ‘ a e
...2()I ’ |‘ .
I i ._.401 R ] i
. Figi 4 - The control sxgna.l wr () e Fig.5 The control signal uz(2)

5 Condumons
Doy This paper presents a method for demgnmg a vanable structure controller by usmg only the
'mput and output measurements of the plant for MIMO systems. Both structured and unstructrued
‘uncertamtles are cansndered The modeled part of the system may contain unstable LGI'OS and un—
stable poles. Therefore, the systems to be consxdered are very general When the gam matnx Bo
‘1s stnctly row dlagonally dominant or positive definite our desxgn ¢an make the whole system
globally asymptotlcally stable. The defect of our proposed method is that the chattermg _phe-
nomenon will ex1st 5 whlch is mevxtable in shdmg mode control. How to reduce or ehmmate this
chattermg is now under study We conclude that if the adaptive control is taken in the sufflclent—

: ly small areas of the shdmg s,urface the chattering can be reduced.
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