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Generahzed Predictive Control of Nonlinear Systems
of the Hammerstem Form

WANG We1
(Department of Automatic Control, Northeastem University *Shenyang, 110006, PRC)

Abstract; A nonlinear generalized predictive control scheme pased on a Hammerstein model is
presented .in this paper. The stability of the closed-loop system is analyzed with the control horizon e-
qual to one. An adaptive nonlinear generalized preclictive control algorithm with a linear estimator is
proposed. The simulation examples demonstrate the effectiveness of the algorithm.
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1 Introduction

" Generalized predictive control (GPC) based on linear models has enjoyed a gfowing atten-
tion in this last few years(!~71, The experimental studies and practical applications have demon-
strated satisfactory control performance of GPpPClel, However, imost plants to be controlled have
some kind of nonlinearity. Thus the attention should be given to extend GPC control schemes to
nonlinear systems. One of these extensions was tirst introduced in [9], where the GPC scheme
was used to control a plant described by 2 Hammerstein model. Due to the fact that the linear and
nonlinear parts of the system were considered separately in [97, the stability of the closed-loop
system is hard to analyze; besides, a nonlinear estimation scheme had to be used in their adaptive
algorithm. In this paper, a nonlinear GPC control based on a Hammerstein model is considered.
Somewhat different from the work presented in [97] a new cost function is used for the controlier
design, and stability analysis of the closed-loop system is carried out with the control horizon e-
qual to one. An adaptive nonlinear generalized predictive control algorithm with a linear estima-
tion scheme (ANGPC) is also proposed. | -
9 Controller Design

The plant to be controlled is assumed to be representable by a discrete-time Hammerstein
:nodel of the form

A DY) = Bz Dzt — 1D + C(z Vo) /4 2. n

where A(z~1), B(z~') and C(z7') are polynomials in the backward shift operator z~1 of the

form

A = 1 + az™ 4 o a2
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B(z™1) ==bg + bzl A eor + buz™,
C(z™Y) == 1 - ¢z~ 4 oo - gzt
The static nonlinearity is given by L " B . ;
2(8) = 70+ ru(®) + 122(8) + o0 + rar(t) @D
where pis‘odd. {u(¢)} and {y(¢)} are the plant input and output sequences respectively. d=1—
z~1 is the difference operator. Notice that the model (2. 1) has the advantage that the controller
will naturally contain an integrator(®], The sequence {w(£)} is a stochastic process defined on a
probability space {8, /#»P) on which a sequence of increasing sigma algebras is denoted by ( P ;,:
t€ N) where Z, is generated by the observations up to and including time ¢, The sequencé '{coi
(t)} is assumed to satisfy k L :

Blo(®/ fmy) =0, as. . @3
E{w(t)Z//,_l} =o?, a.s. @4
llmsup i }‘_lw(t)2 < oo as. | , : (2.5)

The cost function has the following form

1A LA .
J=E{D @+ ) — s+ PP+ 4D, dwt + j — 12| F) (2.6)
=1 =1

where {g,(¢)} is a known bounded set-point sequence, N, is the prediction horizon whereas 4 is a
weighting constant. The expectation in (2. 6) is made given data obtained up to time t, The cost
on 4w (¢) is physically meaningful, since Au?(t) is monotonically increasing, thus it penalizés
changes 1:n the control action. -
For the sake of simplicity , assume C(z~!)=1, Note, however, that the method can readily
cope with coloured noise. Using the following polynomial equations , [
1 =F(z" DAL + 2796,(z™1), (20T
B(z"DFi(z™) == Ei(z~') + z7'Hy(z™1), ; (2:8)
where j==1,2,+,N; and _
CFET) = fo A framt A e A fioE,
Gi(z™1) = g§ + g7} A= o0 + gl
Bi(z71) = eq + ezl A o0 4 gjyz7IHI,
Hi(z™Y) = hf -+ bz=' 4 ooe + Biz77tL,
the plant equation (2. 1) can be written in the form ’ ; : bt g
y(+ ) = Bide(t + j — 1) + G0 + Hdao(t — 1) + F,w(t +H @9
where j=1,+,N;. ' :
Using (2. 2) the equation (2 §) can be written in the vector from

y= EZr,u, + Gy + 8 }_lT,Ju G—D+r @1

=1

where [_2/(&+ 1), ee J(f+N)],
ul = FAu(t) Au(t+ 1)y, b6+ Ny — 1D,
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G = [GU""’GNJ’ HY = [HI’"WHNIJ’
F* = [Fio@ + 1), Fyo( + N

and where £ is the N, X N, lower-triangular matrix

2.1

E= : . I (2.12).

en,—~1 @ey-2 °°° &
Define ; gf = [yt + 1,0+ N
From fhe definition of y, g, and w the cost function (2. 6) can be written as
T = B{(y — 3"y — 3) + dqu,| A (2.13)
Substituting (2. 10) into (2. 13), differentiating J with respect to u, and putting the result to e-

qual to zero yield
(rd + D LA Do A Gy + H Y rdd(t — 1) — ) + Au, = 0.
? (51 §==]

i=1

2. 14
If we ignore the dependence of % (i==1,+, p—1) on »,, we obtain
z 2
T B D Sra 4 Gy(®) A H ) i (6 — 1) — 3,) + dup = 0. (2.15)
=1 ,';,:1 )

which can be written as
=1 ?
P BB D v A (BB 4 ADu, = 1,8 (g, — Gy() — H D rfié(t — 1)), (2.16)
=] i==]

This constitutes a total of N, equations with &, unknown elements. It is not easy to find a
solution for u(¢). Note that the control horizon and the output prediction horizon have been se-
lected to be the same, i, e. N,, in the above analysis. This is not a necessary requirement. A
control horizon N,<ZN, can be used [3]. Furthermore, it is possible to put the control horizon N,
== ] in our design of the controller, i.e. 4uw(¢+ j)==0 (j==1,«,N;~1). In this case, », and F
gi'ven in (2.11) and (2. 12) take the forms, respectively,

= Au(d), 2. 1?7)
B == [eg,0,000 ,eNl-lj. » (2.18)
Using (2. 17) and (2. 18) and noting that 27w/ () =u'({—1), (i=1,-,p), equation (2. 16)

can be rewritten in the form
-l I
ke Zwm‘(é) 4w () =P Dyt 4+ Np) — alz"Dy@) — ) Z\w!u‘(é - 1)
i=1

=1

i
+ ke y rab(t — 1) 22t — 1) (2.19)
i=1 '
where P(z7) = ken, 1 + enjpe™! + oo A e, '

Nl N, .
a(z“'l) = kz_}ej_lGj(z"l), ﬂ(Z—_l) == kzjejw_lﬁj(z“l)
j=1 J=1 .



No.6 Generalized Predictive Control of Nonlinéar Systems of the Hammerstein Form- . 675

¥
where as k=r,/. (r,e+ A) and e= Ee;".

Equatlon (2.19)is 2 p’th order Hammerstein polynormal in u(¢) which is faxrly easy to
solve numerically in order to find u(t). For mstance, the improved root solving procedure glven
in [97] can be used, and a real root of minimum magnitude can always be found because p is
odd. ' ’

3 Stability Analysis
" Let us rewrite (2. 19) as

=1 .
(he + 7BGD) 3 i) + (1 + 27,8 )) dur )
i=1

t—l

= P@E Dy + M) — az Dy, ce | 3.1
From (2 1) and (2. 2) we have : :
A D My() = z—lB(z—l) Zr,Au'(t) + z"lr,B(z“)Au’(t) + co(t) 3.2

Lemma 3.1 For the system ’ ,
TG DM@ = 4Gyt + B +,BG) Ewu’@) + 0<Z“‘>w(‘>’

if T(z“‘) is stable, disa pos1t1ve integer and m(t) Satlsfles (2.5), then
W-;(Auz(t»z < Wi‘;yz(u— D+ Ky as.

where 0< K ,< oo and 0<K2<,'ooy.
Proof See [12].
Theorem 3.7 If the control law (2. 19) is used, N; and A are chosen such that :
T(z™!) = A(z‘l)A(l -+ z‘lr,ﬂ(z_l)) + z“lr,a(z‘l)B(z“’) (3. 3
is stable, then, with probablhty 1, b o
1) The resulting closed loop system will be stable in the sense that {Au (&)) (z-— 1, 5 ,'pj) 5
and {y(¢)} are sample mean square bounded.
2) The control law (2. 19) mmlrmzes the cost function ,
‘ P =BPEGE+ N — G+ M) + 2wy 2y G 1

where A == ak/7,. Moreover the minimum possible value of the quadratlc cost function (3. 4) is.
SNy Np-j ; :
P = 803 St
Jj=1  i=g’

~ 3) For constant {9.(t)} and co(t)»—(} we have
hm(y(t) — 7.0 = 0. :
Proof 1) Multiplying (3. 1) by 44 and z“lr,B respectively and using (3. 2) we obtain

Taur(t) = AdPy. (¢t + N.) — (Ad(ke -+ z~1aB) + 2 ‘aB) ‘E‘T,Au &) — - an(®), (3.5)
s—l
PR ' o
Ty(t) = 27 BPy, (L + N, b 2t L ’”‘:h’ A (1) + 1 + z‘IT?ﬁ)w(t) (3.6);
iz



876 CONTROL THEORY AND APPLICATIONS : Vol. 11 -

If T(z~1) is stable, from equations (3. 5) and (3. 6) and using superposition, Lemma 3. 1, the
assumption (2. 5) and the boundness of {.()}, one obtains conclusion (1) of the theorem. A

2) Multiplying by 7,E7. adding A4u?(¢) on both sides of equation (2. 10) and using (2. 17)
and (2. 18) we have ' '

7, BTy + Adur(t) —-rfeAu'(t) + Mu’(t) + rpe Zr;zj‘u‘(t)

+ BTGy (&) + Hzr,-du‘(t — 1) + F) (3.7)

$e==1

which results in
Au?(t) -P(Z“)y(t + N + Va4 (t) — vt + Ny)

— alz Dy — B Er,Au G 1)~ ke S ) (3.8
= $==1
Ny
where o(t + Ny) = kEe,._m',(z~i)m(t + . NGRD
: =1 _
Define &t + Ny = P Dy@ + N + ¥dur (D). (3.10)

Thus (3. 8) can be wrltten as
Ot + N — vt + V) = alz"Dy® + G meu — 1)+ 4w + keZ'r,Au @

) (3. 11{) )
We note that ®(¢+N,) —v(¢4+N,) is Fr-measurable. It is obvious that &+ Ny —v(+Ny) is
the optimal linear prediction of @(t+N,) given £ i.e
P+ Ny =@ + N — vt + N )

el

=a(z"Dy@) + ,6(4‘1) me — 1) + A (t) + kezmuict). (3.12)

Now, note that (b(é + Ny = (D"(t 4+ N 4 2@+ Ny - 3.13
Substituting (3. 10) and (3. 13) into (3. 4) we obtain after some manipulations k
J =Bt + Ny — Pz Dy (¢ + NP + dfo@ + NO?A)

=E{v(t + ND?| A}. (3.14)
The first term on the right-hand side of (3. 14) is greater or equal to zero and is brought to zero
by ' '

U + Ny = P(z"Dy, (¢ + Np. ‘ (3.15)
Substituting (3. 12) into (3. 15) we have the control law (2. 19) immediately.
Finally, from (3. 9) we obtain

My =1
Biv(t + ND?| ) =B{(k D je;1 p fiolt + j — D*[ F)
=1 =0 ’
Ny Ny

D) AL (3. 16)

j=1 =0

3) Using (2. 7), (2.8) and the definitions of a(z=1) and (2™, T(z™) can be written
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= AA(l — 4"11-,11:2#3‘,_117}) —I-—z“lr,kBZzJe,__ (8.1

From (3.17) we have

§=]

T(1) = 1kB(1) Y ey = 7,B(1)F(L).

Conclusion (3) then follows immediately from (3.6)::
4 ANGPC Algorithm

In the previous sections we-assummed- that the plant parameters were known., ‘When' the
plant parameters are unknown, a' parameter estimator must be-used. In thxs section an’ adaptlve
nonlinear generalized predlctlves control algorithm (ANGPC) is derived ‘by ‘combining the con-
troller give in section 2 with a general pdrameter estimation scheme. The ANGPC algorithm is
based on the following assumptions . / :

* Al) The plant orders n and m in (2. 1) are known.
A2) pis a known odd pdsitive integer.

Let us rewrite the plant equation (2. 1) as follows -

AEDYO = DBGED MG — D + o) @D
i==] [t ~ :
where Az =A@ Dd = 1 4+ diz7! 4 e + a2,

Bi(z™') = 7B(z71) = b} + blz=! + wer bpz™,  i= 1,
The following polynomial equations are used to calculate G;(z71), Ey;(z~') and H(z71y,

L= F(a D4 () + 2y (), T
B DFi(z™Y) = By(z79) + zZH(z7Y, : 4. 3)
where Bj(z7!) = ey + ezl 4 oo ezt

Hy(z™") = B -+ Wz 4 oo 4 pii_ 21,
and where ¢==1,+s+,p and J=1,%,N,.
. Define - BY = [ebyel, e seh 1], HT = [H,, e N
Thus the control law given in (2. 19) can be written as
71 :
E’;EE.% + (E'IE -+ z)‘u? EX(y, — Gy(t) — ZJHA’"(‘ o 1)) AL

The ANGPC algorithm is now glven below , e
1) The parameters of system (,4.‘ 1) are estimated by using the follqwjng,‘e_stimation

schemel19] ) , o
o) = 6¢t — 1) + e 1)X(‘ D@ = Xt = D%~ D], a>0,4.5) |
P8 = r(t— 1) + XOTXW, #(0) = | W

where ’
LX) = [y(t)‘,... 9 — 1), du (), ooy u(t — m), eee AP (L) | e ,Au?(t 7 'ﬁi)];‘; L |
OO = [= @Oy eee, — Gy (0,B50) o0 BACE) oo 340D o s (0) ). i’
2) (4.2) and (4. 3) are used to calculate Gi(z™Y), Ey(z=Y) and H.,(z—l)
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3) The control #(¢) is determined by solvmg the equatxon 4. 4).
Note that a linear estlmatxon scheme is used in our algorithm, whereas a nonlinear estima-
tion scheme must be used in [97 in order to update both the linear part coefficients &, b; and the

1

nonlinear part coeff1c1ents Tir
5 Simulation

‘ In order to investigate the effectiveness.of the ANGPC algorithm described in the previous
section , some simulation experiments are carried out in this section. For the purpose of comparing
the results, the two plants (L1 and L2) and the two nonlinearities (NL1 and NL2) used in the
simulated examples in [9] are employed in our simulation éxperiments. With reference to equa-
tion (2.1) and (2. 2), the following values are used; '

Ll: a=-—0.9, by=1, b=2,

L2, ay=—2.87, ay=2.74, ay=—0.87, by=0.04, b;=0.002, by=—0.037,

NL1: ro=1, m=1, r=1, r3=0.2,

NL2:. 7y=0, rl=1, ro=1, ria=—1.

Note that L1 is open-loop stable and nonminimum phase, whereas L2 is open-loop unstable
and minimum phase. In addition, »(¢) in (2. 1) is here a zero-mean random disturbance with
covariance o2=0. 1.

In order to consider transient behavior, a set-point sequence y,(¢) is assigned as follows ;

L1 L2

vsamplw set-point value samples set-point value
1—20 1 1—40 1
21—40 2 41—80 2
41—60 1 : 81120 1
61—80 0 121—160 0

A cycle from 1 to 80 or from 1°to 160 samples is repeated periddically. In each of the Figs.
1~ 4, the plots given in la, 2a etc. show the actual system output y (¢) in an unbroken line
whereas the set-point sequence 7,(t) is shown by a broken line. The plots given in lb 2b etc.
show the control input »(¢) by an unbroken line whereas the intermediate variable z () is shown
by a broken line.

The parameters of the ANGPC algorithm are chosen as N1=3, A==0. 01 for L1 and A=0 .
for L2, It can be seen from Fig. 1~4 that the system outbut y(¢) tracks the set-point sequenceA
7.(t) quite well even though there exists a random disturbance. The large initial input and output
deviations are due to the effect of an initial estimate of the parameter vector. The predictive na-
ture of the controller can be clearly seen in the plots, where advance knowledge of a set-point
value change had caused the actual output signal to start its distinct change before the change in
the set-point value has occurred. Comparing with the simulation examples given in [ 97, it can be

seen that rapid variations of the control input #(#) occur in the simulation of L2-+NL1 (Fig. 3a)
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and L2+NL2 (Fig. 4a) in [9], whereas the cotnrol input «(¢) is quite smodth in our sxmulatlon
experiments of L2-+NL1 (Fig. 3b) and L2+NL2 (Fig. 4b)

-2

50 160 150 200 250
Fig. 1(a) The output y(¢) of L1-+NL1 and the set-point g (&)

2 — .

1.5 @
1 "‘“"\""v"n’“"\\“”“\ “/‘_,/\’fg,,«k‘.»'
WWW
0.5 o
0
—-0.5 " . .
0 50 100 150 200 250

Fig. 2) The outpat y(t) of L1--NL? and the set-paint 3 (1)

3 T v T v
¥ (&)

g

B 30 100 150 260 250
Fig. 3(2) The cutput y(¢) of L2+NLI and the set-point 7w

28 I(t) 1

) 50 100 150 700 750
Fig. 4(2) The output y(t) of L24NL2 and the set-point g (£)

6 Conclusion

, Too 200 300 a0 300
Fig. 1(b) The contrdl 8(i) of LH~NLI and the intermediate vriable z(t)

50
ok ) X h 0
"y | ]
- 50 r-’”\""\o‘\_; ‘/l' z(¢)
\ l’, .
" aen
1006150 200 TI60TT 00500

Fig. 2(b) ~The contrel a(t) of LI+-NL2 and the intermediate variable z(t).

% 10 700 300 700 300
Fig. 3(b) The control #(2) of L2+NLI and the intermediate variable E10)

100 v v TSR LTI
. - R
// ()
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0 L
$\ ,’“”‘\."“’j ~ . o
N e ;
— 100¢ \"
— 2008 ) R o
z 0 106 200 o300 400 300

Fig. 4(b) “The contral #(2) of L2-+-NL2 and the in(ermcdiaté 'v'akﬁaﬁle +10)

In this paper a nonlinear generalized predictive control scheme has been presented for S8YS-

tems which can be modelled by a. Hammerstein model. A stablhty result is obtained when-the con-

trol horizon N,==1. An adaptive nonlinear generalized predictive control algorithm has' also been

suggested. It should be emphasized that analysis of stability and convergence of nonlinear gener-

" alized predictive control schemes in adaptive or self-tuning version is still very difficult:
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