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Abstract; This paper is concerned with the Repairable Queueing Systems. ROB) , the MT/G(MS/
H)/1 is typical bulk-arrival RQS. The notatin (M/H) represents that the server lifetime is.exponen- .«
tially distributed , while its repair time has a general oontmuous chstrlbutlon By usmg the method of ...
vector Markov process, its transient solution is easily obtamed Espec:auy, the reliability mdlces of the } :
server are only dependent on the idle probability of the RQS, or equxvalently, on the busy penod and
busy cycle.

. Key words; queueing theory; rehabmty theory, repairable queueing system vector Markov pro-
cess (method)

1 Model Definition

The model M*/G(M/H)/1 is parameterized by N

1) The bulk-arrival process is a Poisson process of the rate A, and the probabxlmes of the
batch size are P(y=m)=a,, m=1,2,++, with the finite mean a; '

2) The service time distribution, G(¢), w1th the finite mean u"‘ and the servxce rate u(t) =
9 () /G(t) where G(t)=1—G(¢);. '

3) The life distribution of the server is an exponential ; with.the failure rate a5

4) The repair time distribution of the server, H({), with the finite mean’ 7 and the repair
rate f(0)=h(t)/H (). N A

The lifetime and the repair time of the server ahd the’ service time and the arnval process. of

the customers are all assumed to.be mutually independent.

2 Vector Markov Process
System states are defined as follows; : ‘
1) The state (0) represems that there is no customer in the system s -
2) The state (n,z) n==1,2,, 0<{z<Coo, represents that there are n customers in the sys-

tem where a customer is being served and the elapsed service time is z, but others are waxtmg for

their service;

3) The state (n,z,9), n==1,2, ", 0<z,ry“<‘oo‘ , represents that there are n customers in
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the system and x’s value keeps till the state
Changed, and y is the elapsed repaur time of o
the failed server. ‘

The. transitions among the 'sys_tem"states

are shown as Fig. 1.

Let : 0 renewal point

po(®) = P[S() = (0)], .Fig. 1 State-tronsition-rate diagram for MA/G(M/HD/1

pu(tyz)dz = P[S@) = ),z < X(®) <z + dzl,
6 (t,z,9)dy = P[S(®) = (), X(@®) =2,y <KYO <Y + dy]

where n==1,2,+. Thus the evolution of the vector Markov process [S @, X(@), Y] can be .

determined by -
1) The set of differential-integral equations

[ﬂ + A] po(t) = J'wp,(t,:c);z(z)dx,

[ 4= + Ao + p(z)] pa(ty2) = AZa,p.ﬁ,(t,x) +J' q.(t,x,y)ﬂ(y)dy,

=1

3 2
[’i + 5_(/- + A+ ﬁ(?l)] ga(tsz,y) = A;aﬂn—.‘(t’x’g)

where po(t,2) =0, qo(t,z,y) =0, n=1,2,°.
2) The boundary conditions

2 (£,0) = Jago(Du(t) + u<t>J B (£ 2) @)z + 845(8)

(1, t>0
where u(t)={0’ . 0’ and 6(z) is the Dirac delta function.
9 Uy .
@ (t52,0) = ap.(£,2), n= 1,2,
3) The initial conditions '
( 1, 4==j,
PO(O) == gy Pn(oyx) = 640(x), n= 1420+, where 6‘)‘ == . .
, 0, &% j.
3 Solving the Set of Equations
1et
A(z) = 20-2“, P(t,z,2) == EP.(tﬂﬂ)Z‘, Q(t’x’?lﬁz) = ZQn(tﬂ:’y)z"
a=1 ~ a==1 " .

a=1

CFr(s) = J;oe—“f(t)dt, f(e) = J‘ e~*dF ().

By wking Laplace transform and z transform for equations (3) and 5), we get
Q* (s,2,9,2) = aP* (s,z,2)e""H(y)
where : ' p==s-+ A— 24(2).
Similarly, from equation (2), we have
P*(s,x,2) = P* (s,o,z)e“"‘G(z)

M

(2

@3 .

4

(5)

(6)

(P
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where : ; v-u-y-{—a—-—ah(y) ‘ ,
In order to determme P*(s,0,2), from equations (1) and (4), we obtamed o i
. G2 <z>]po @) '
P(s,oz) T O @
By Rouche’s theorem, z—g (v) has exactly one zero 5(s) msule unit cn'cle |z|=1, and b(s) is
also a zero of the numerator in (8). Therefore, we get - i
y p8 () = F()[s + 4 — 241 L S ¢
'~ and | : : ' G
P*(s,2) = ij“(s,z,z)dz = 26" [Z — yp¢ D]/ [z — g* W], (10)
0 (s,2) = ijjq~(s,z,y,z)dzdy =all*MP*(s,2), an’
Pr(s) = lim P*(s,2) = [1 — sps (0]/[s + a — ah* ()], (12>

Q*(s) = lim Q*(s,2) = aff* @P* (. E A
4 Some Characters of the System ' ) - B k
Theorem 1 The MX /G(M/H )/1 queue corresponds to the MX/G/1 queue where - 7
; §* () = g*[s + a — ah* (8)], ' . eP)
Proof By Ref.[1]. :
Theorem 2 The system is stable if and only if , ;
p=%‘(l +%)<1 | (15
Proof By Ref.[2]. ' o , o
Theorem 3 The Laplace transform of the system renewal (. e. ‘the system -becomes
empty) density ‘ : , « '
’ - T mr(s8) = (s Dpd(8) — by , S g :
Proof By using the general formula of Ref. [37], and notirig Fig. 1 and equation (1), we
have ‘ - ' |
m* (s) = ijf (sy@)p(@)dz = (s + A)p¢ () — s,
Corollary 1 The Laplaee~Stieltjes transform of the renewal time distribution of the system
e(s) = 24[6()1/ (s + 1.
Proof In the general, the system becomes empty forms a delay renewal process When z—-—;
0 in the initial conditions, it forms a renewal process. In this case, : ¥ .
pe () = [s + 4 — 24GB(s))]N
Hence, the conclusion comes 1mmed1ately from c(s) =qn (s) / [1 +m ().
5 The Quantitative Indices of the Queue ‘ ,
Theorem 4 The L and Z transforms of the queue length dxstnbutlon at arb1trary tlme 1s '

L* (s52) = p¢ (s) + p*(s,2) + Q" (s,2).
Proof Obvious.
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Corollary 2 When p<1, the stationary distribution of the queue length exists and its z

transform .
e o _ = DA = p)g (0 '
7 L(z) = ‘Luoxl sL* (s,2) Py
where % =4 — AA(2) + a — ak*[A — 24(2)].

Corollary 3 When p<C1, the mean queue length of the system
L= lim L(z) = p+ lim Lg*]/2(1 — p)

where
. ,
lirln_ [g* ()] = lzaz(l + %) oh + A (D pfa + Rata(oy + 1/ /0 + P2

Theorem 5 The LS transform of the busy period distribution is
A = A[®)]
and when p<C1, it is a proper dist:ibution.
Proof Let D,(n==1,2,++) be the busy period random variable started with » customers.
Denote by dy(s) (n=1,2,+) the LS transform of D,. The busy period D is defined to be the

time from server’s beginning service until the queue empty. It is obvious that

D= Dlaby &) =[G

B==1

Thus the LS transform of D is given by

d(s) = D ad(s) = A[di(s)].

r=]
Next D, may be regarded as the busy period of the M/ G/1 queue. It is well known that
d,(s) =b(s). Hence
d(s) = A[B(s)].
As to that P{D<t} is a proper distribution, it directly follows from the following fact, i.e. when -
p<l, »
lim 5(s) =
&0+
Corolfary 4 When p<C1, the mean busy period

B = lim — (AB(s)TY = & a\[[ L2 LAY
D= lim (A[b(s)])——ﬂ(l%—ﬂ)[l ﬂ(1+ﬂ)] .

Theorem § When p<1, the LS transform of the idle cycle (i. e the system begins from the .
idle period and again returns to the idle period through the busy period) is

c(s) = -—————A[b(s)]

Proof Let C and I be the idle cycle and the idle period of the RQS MX/G(M/H)/l re-
spectively. We have C=1I-D and I and D are mutually independent. Since the distributions of 1
and D are 1—exp(— Aty and A[b(s) ], respectively, taking LST of C==I-+D, we have

c(s) == -————~A[b(s):|
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This result consists with one of Corollary 1, hence the LST of the busy cycle also is ¢(s).
~ Theorem 7 ' The'L and LS transforms of the virtual waiting time distribution is

G @F—6p( 1— A (0]
e+ A— Mrg @T=6" a[1= FEOM

Proof Let W(t) represent the v1rtual waiting time for an arbitrary (test) customer in an

w* (3,9} =z

arriving batch. Then W (&) =W,(t)+W;, where W,(¢) is the waiting time of the first customer
in the test custome: s batch, and W, is the waiting time for the service of the batch-mates who are
served before the test customer under consideration. ' E '

Denote by W1(t,2) the distribution of W,(¢), i. e.’ Wl(t,z) P[W, ()< z]]. Since the. Mx/
GM/H/ 1 queue corresponds to the M*/G/1 queue, for the M*/G/1 queue, by letting @=0 in
Section 3, we have - :

 P*(sy2,2) = P* (z,()‘,z)e‘["““*"“’”‘é (),

27 — [s+ 2 — 2@ Jp¢ ()
z—§*[s+ A= 24(2)]

Also, because §* [s+A—24(2)]=g" (y) =¢* [yfa-—- ah* (y)]==g* (v) it implies P (s) =
p¢ (s). Thus '

P* (8,0,2) =

g1

_“/\,_...

Wi(t,2) = Fo(Dulz) + Z J Batyu) Go % § % v % §a)du

a==1

where # reprssént the convolution and §o(z) =§(u-+2z) / é(u). By taking Land LS transfox;ms , '

we get
wi' (s50) =3¢ (s) + ZJ p.(s,u)[ﬁ"(e)]“*‘[f *"g(u + /8 (u)dx]du
=]
=B @ + P 6.0,7° @) e [ 3 u + o)adu
N *i9) —
=35 () + ["4((0)) = ;”°((y§)] e[ iy
" *i(g) —
=7¢ (s ) + [g ((9)) — }g’?o(is))] . 'Wg(y)J —(r—~0)ududy
=5 () + [y‘“(ﬂ) — 726 (D] _ G° (8 — 9 ()
po y— 98 -6 -
where Pz g A— M[g*(o‘)]. k

Let ro(n==1,2-+-) be the probability of » test customer being in the n-th position of an arriv-
ing batch. Using a result in the renewal theory, Burke[*] has showed t‘xat it is glven by

- ___Zla‘

=g

Thus, the LS transform of W, is given by

w2(9)=27‘-[ @ = 2 Z,a.[g ON
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Since W,(t) and W, are independent, the L and LS transforms.of W(t) is given by
w* (s,80) =wi (s,6)w,(6)

__ G ®T—6p(s) 1— A[ge O]
s+ a— 243 @]~ 6 o1 —gG* O]

Corollary 5 When p<C1, the stationary distribution of the waiting time exists and its LS

transform

w(8) = lim sw* (s,8)
a0

_ (1 — p)6 11— Al @]
6— A+ A (@) ol -7 @OF

Corollary 6§ When p<1, the mean waiting time
W = lim — [w(® ]
60+

_[hal + o/ pToh + AMdPa(oh + 1/BD/u+ ¢+ pA"(1)/a]
o 22a(1 — p) ’

Proof By direct calculation.
5 The Reliability Indices of the Server
Theorem & The Laplace transforms of the server availability and unavailability
A () = [1 + all*(Dsp (D ]/[s + a — ab* ()],
U*(s) = [1 — spg () JaH*(s)]/[s + a — ab* (s) ].
Proof By the definition of availabilify, A(8) = P{the server is good at time ¢} ==po(£) +
P(t). Thus the results are clear.
Corollary 7 When p<1, the limiting availability of the server
Ao

A=1—=,
up

Proof - Since limp(¢) exists, the conclusion follows from A==lim,.o+s4" (s).

100

Theoremn 9 The Laplace transform of the server failure frequency
Wi(s) = [1— spg()]a/[s + a — ab* ()]
Proof Using the general formula of Ref. [3], we have

Wi (s) = Ejjp: (s,0)adz
g==]
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=[1— spt () ]Ja/[s 4 a — ah* ()]
Corollary 8§ When p<1, the limiting faﬂure frequencx of the server
Waem= 222,
Proof It-is similar to the proof of Co;fol‘lary 7.
Corollary § When p<1,

L= o9 (o) = 1= dis) +1 dg;c.(s), for i = 01,2,
where ae) =1, als) = ),
proct o# ; PE fg{v(@]
5T Ad‘(S)/D e()]
= G — a(®)

T=o(s)

1—spf(s) =1— du—————w‘(ls)_ “; (c:;gs)
=1 = (o) + dis) — HL )
=1 — d(s) + 0.(8)1 mcc((ss))d;(s)
= 1= () + 1 ‘“s)c.(;)

The server reliability R(t)" is defined as the probability: that a ngvj{r server does not ‘faii by ¢
Hence, it is the complementary distribution of the server first failure time. In order to find out
the first failure time distribution of the server, we regard the state (z,z,y) (the server fails) as

- an absorbing state. In this case, the state probabilities of new process must satisfy the following ;

the set of equations

(-d-_ + x)m(t) - J""n(;,w(@az, .

[ + + A+ a4 l‘(r)] re(tsz) = 7‘2“:"‘:«;(%@, R == 1 2,"‘ |
the boundary conditions ‘ . e SR “
7ty 0) = Aagro(OuCt) + u() j rent (b () dz + 88(0), 1= 1,2,

the mmal conditions ‘ B o ;
| 70(0) = 0y, 7.(0,2) = ,8G@), m= 1,2,
By solving above set of equations, we obtain.

Theorem 10 The Laplace transform of the server reliability
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B (s =i () + 2| 7 o)

=]
=1 arg D/ + @
1 [ T abt (s -+ &) 1
e o s—{~3\~—2A(b(s+a))
and the mean time to the first failure (MTTEFE) of the server

MTTEF = lim R”(sh
&0+ 4

= 1/a + ba) /[ — 240 ]
where b(s) is the root with minimal absolute value in z of the equation
z=="g"[s+ A— 24(2) .
Coroilary 10 The LS transform of the first failure time distribution of the server
F(s) = [1 — srg () ]a/ (s + ).

Proof By direct calculation.
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