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Heo Robust Sub—Optlmal Control -
with Robust Regulation Performance
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Abmract; In this paper,an He. robust sub-optimal contqllet synthesis problem with robust regule« o
tion performance is investigated for a plant with structﬁred uncertainty. It is shown that the problem, s
can be reduced to an Ho standard problem with a sailmg patameter A design example applying the :
presented approaeh to the D. D mampulator is given.
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1 Introduction o o
Consider a system given by Fig. 1. The. plant with structured uncertainty Py (s) is given

¢ = (A-+ 44z + Buw + (B, + 4B)u, D
z=0Cw + Dy, o \wﬂj’ e 2
Un=C+ Dyw+Dyu,  (3)

where 2 €& R* is state vector, u € R™ control input ,y, reference input, Y€ Rq mea.sured output,
E€R*(wE L,[ 0, +o0)) disturbance input and z€ R” controlled output. 4, Bl s Bay O, Car Dlé,
Dy, and Dy, are known matrices with appropriate dimensions. It is assumed that uncertainty. AA,
4B are described with unknown matrix ¥'€ R™*.and known matrices B € R, FL,ER"X" FbG
R¥™ as follows, ; ’ ) o ‘
(44 4B] = EZ[F, F,). ~ R )
Unknown matrix X belongs to a given bounded set 9= {¥|o(Z)<1}. ’
. We consider the following controller synthesis problem design a compensator, K (). Whieh"
satisfies the follewing requirements ; it el
1) Robust Stability . The closed loop system of plant Py with the controller K (s) is mternal—
ly stable for all ¥ € Q.
2) H.. robust sub-optimality ; for a given y>0 R e
170 <y, VZEQ . ‘ (5
where T, denotes closed loop transfer function from w to z. ‘ '
3) Robust regulation performance; for a given reference signal y, with w==0, regﬁl,ated er-

ror becomes

* Manuscript received May 23, 1992, revised Apr. 26, 1994,
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lime=0, VZ€& @ (6
=00
where e =y,—y,. The reference signal y, satisfies a differential equation
P+ a4 e+ agy + oy, = 0 (D

and the characteristic roots of (7) A(i==1,+-,p) are all in the ‘closed right half complex plane
with unknown initial condition. '

There are many literatures in which one or two of the three objectives des’cr'ibed above are
considered. The design problem to satisfy 1) can be reduced to an H,, standard problem since the
objective is equivalent to anH°° norm bound constraint’], The objective 3) can be achieved by
incorporating' .an internal model into appropriate channels of controller if plants exist in some
neighborhood of nominal plant in the graph topology®. The controller synthesis problem with ob-
jectives 1) and 3) is eqﬁivalent, to the problem of robust regulation with an Ho, constraint, which
is solved by Nagpal and his coworkers in paper [3]. As\Well,.lgnown, the objective 2) with a
fixed X is the Ho, performance problem. Hence, multi-objective synthesis problem with 1) and
2) is nothing but an H., robust performance problem. The problem has been investigated using
Riceati inequality methods(*%] or the u-synthesis method.

In this paper, we design a controller K (s) to meet the requirements 1)~ 3) simultaneously.
It is clear that one possible approach to solve this problem is to find a robust stabilizing controller
which has an internal model and satisfies the Ho, robust performance requirement. For this end,
it is important to clarify that under what condition the solution of the He, robust performance
problem can include the internal model. The remaining part of the controller out of the internal
model should be designed to satisfy the H., robust performance requirement. It is shown that this
problem can be reduced to a H. standard problem for an extended plant with a scaling
parameter. -
2 Preliminary Results

First, we.consider a strictly proper compensator K (s) give by
K(s) = Dbl €9
le. o)

The following theorem established by the well-known internal model principle gives é sufficient
and necessary condition for K (s) satisfying performance requitements 1) and 3) which is a slight
modification of the results given by Devison[?], ‘

Let M be a pX p matrix given by

0 1 0 0
0 0 1 0
M= : : R i ®
— 0, — O — o3 - —a
Theorem 1 Assume that
[4+ 44— Al B, + 4B

rankl_ =n+Q9 i=1’2)’"’?, (10)

C: Dy |
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hold for all Z€ &. Then, K(s) is a solution of controller synthesis problem with objectives 1)
and 3) if and only if

K(s) = {Cm + (sl — DBy} (s — A.)"'B, + C (sl — 4)~'B,. an
where A,=T block diag{M, M, e, M W1, Bu=T B, with the property ‘that { block diag{ M,
M, ey M } B.} is controllable and 7 is arbxtrary nonsmgular matrix. The matrxces A, Bl , By,
¢ and O, should be determined such that '

m@—ﬁiﬁ'ﬁ ----- | o (12

is é robust stabilizing controller for the augmented plant

A+ 44 0, B+ 4

Pa —— ..; ................ . (13)
* 0 Li 0

¢, 0° Dy

If the full state of plaht Py is measurable, i.e. Cy==1, Dy =Dyy==0, then use of the internal
model principle gives the next result similar to Theorem 1. ‘

Theorem 2 Assume Cp=1I, Dy =Ds;=0 and (10) hold for all ZE€ &, Then, a solu_tion‘ of
controller synthesis problem with quectives 1) and 3) is given by ' T

K(s) = Cu(sl — A)"'B, + D ' (140
where matrices C,, and D should be determined such that
K(s) = [¢, D] (15
is a robust stabilizing controller for the augmented plant Py, given in (13). , )

In controller (11) and (14), K (s) and K are free parameters which are constrained only to
be a robust stabilizing controller for the plant P,,. Using these freedom we can find a contmller
K (s) such that the closed loop system satisfies 1)~3).

Let a state space realization of closed loop system T, be given by

Ze == (A, + 44)x. + Bw, (16)
z = Cx.. _ an
It is easy to show that the system satisfies 1) and 2), if there exists a P>0 such that
(4, + 4407P + P(A4, + 44,) + y*zPBchP + 000, <0, V 44, (18)
If there exists P>>0 satisfying (18), then we call the system is H., robust sub-optimal.

%3 Compensator Design

Instituting the controlter (11) or (14) into the e Pr(s) ,
plant (1), (2), the system given in Fig. 1 can be e- ; f o —“
quivalently described as Fig. 2(a) with extended plant , L L

Piemp given by Fig. 1 The closed loop system
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[A+44 0 : B B+ 4B
B,C, An | BuDy B.Dy;

......................... Lansvsenasncsascsnanasssransnne

Pm,,-‘—: 01 0 é 0 ~Dx2 ’ ’ (lg)

o017 o
[ lee o) F ol Il

It is clear the K (s) robust stabilizes P, if and only if the K (s) robust stabilizes Py Hence, we

can obtain a compensator satisfying 1) ~3) by finding such a controlier K (s) that the closed loop

system in Fig. 2(a) is He, robust sub-optimal.

w z z!
B — et e p—— e
Preno() Pi(s) )
% ¥
R K(s)
(a) »

Fig. 2 Equivalent system
Theorem 3 Given y>0. The system given in Fig. 2(a) is H., robust sub-optimal if and
only if there exists a scale 2>>0 such that the system given in Fig. 2(b) is internally stable and
satisfies || Tyw () || o<y Where scaled plant P,(s) is defined by
| C A4 0 [ B B [ B
B.C; A, I_BmD21 0 _! LBmDZZJ

la-1r, o 0 la-md | 20)

oz © fo o o7
L le, o © o o D)

Proof We only show the casé with feedback contorller E(s) given by (11). The case with

P,

I

controller given by (14) can be shown similarly. A state space realization of the closed loop sys-

tem in Fig. 2(a) is given by

.= (A + 4Dz + Bw, @D
z= 0% , (22)
4  B. B,C

BmBZ Am + mezzcm BmDZZZY 9
~202 §1 + §ZDZZCm §2D225

B
B = [BWDZI_‘ ’
B2
¢ = (¢ Dyl sza]

and AA=EXF with E=[E* 0 0], F=[F, FC, FT). ‘
From Theorem 2. 4 in [6], K (s) is such a controller that the closed loop system in Fig. 2

S
i

where
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(a)yis H. robust sub~optunat if and only if there emts a scale 42>0:such: that algebraic Rxccatx
ihequality.
AP + PA+ y*zmmp» + }}I?EEFP + é¢ + A*zifrl?‘- <0 - S (23).
has & pesitive: definite' solution. P..
On the other hand, the closed loep system shown in Fig. 2(b) is described by

$=2+ [Byablw, 2
é Pty : v

From Lemma 2.2 in [7] » Riccati inequality (23) have positive definite solution P if and only:if
the system (24),. (25) internally stable and satisfies | Taw | o<y

Theorem 3 shaws that our design: problem can be reduced to the H,, standard problem with a
scaled plant P, Application of Sampei’s method!®] gives the following results which. characterize
compensator K (s) in (11) with a desirable K(s). :

Theorem 4 Assume the (4,B,) is stabilizable, (€,,4) is detectable and:
[A—;ZM Bj—-n+q, t= 1,2, - (28)
Then,. there exists an mtemally stablhzmg controller K (s) for plant P, () ‘such that
| T || <y for given A>>0 and >0 if and only if there exists a C E€R™ guch that the fol-
lewing conditions hold

1) There exists a matrix FER™®+0 gueh that Riceati inequality ;

ARP + PAe + y2PB.BEP + €50, < 0 o oen

has: posmve definite solution P.

rank

2) There exists a matrix K € R®+X% gyeh that Riceati inequality

ARQ + Q4x + @BLBEQ + y~20%C, < 0 (28
has pesitive definite solution: Q. :
3> @>y2p,
wiiere .
PR BiC. ] LB,
" By Av+ BT B
B, = [ B yiE] _Ta Dy€,. 7 [ D2
B.o, 0" T |, e, ,_A*‘F,J
[ a4 o7 fo q
"= 1 aut Bvued T 5 lpy o
® B, = [ B yw} [o - [ & szcm-f.
¥ ,_BmDZI 0 J !_DZI 0_’ lﬁ’lFa 3-'"11"50@J

: 0 :
Proof Outline of proof is as follows. Let @=§— [ J u. Then, the exxstence of mtetnally;
2

stabilizing controlier K (s) satisfying | Tow || <<y in Fig. 2(b) is equivalent to the exlstence of
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feedback controller & (s) (z=K(s)3) such that the closed loop system is internally stable and

|| Tow || «<ly. The condition 1)~3) follows by use of Theorem 2 in 8l
Theorem 5 Assume that the plant with uncertainty satisfies the assumption in Theorem 4

and condition ;

A4 AA— M B 4 ’ oo ’
rankr + A‘ 2+ m=ﬂ+q’ VEEQ, i=1,2,"',p. (29)
L e by |

if there exists a matrix C,ER™ 9 and a scale 2>>0 satisfying the conditions 1)~3) in Theorem
4, then such a desired controller (11) that the closed loop system in Fig. 1 satisfies performance

requirements 1)~3) is given by

An 0 i [Ba 01\ '
K<s>=[§1 i B | (30

whete
A=A+ @ — V"éP)~1{QK o1 + QK DyF — yEM},
| le. o

By=— (@ — ?—ZP)I‘IQKZ’ Bi=— (@ — y2P) QKB — K2D22Cu) 5 C=F,

M =H + F*{[B" DLB.IP + [DRC, + AFEF, 0]} + FT(CT0y + A"RFEFOF
ro o 0 7, BB+ #REE BDRBL

— Q{K . -+ i } s

o Doohit] T L BDBT BDuDRER

H =— {A;P + PAF + ‘V—ZPBFB;P + d;CF} 3 K = [Kl sz.

Similarly , we can obtain a desired compensator for the case y,==% as follwos.
Thoerem § Let Ca=1, Dy =Dp=0. Assume that (4, By) is stabilizable and Dy, is of full
column rank. If there exists a scale 2>0 such that '

AP + PA + P{V—Zﬁléf - gz(ﬁﬁi)lz)—lﬁ?”’ + OH{1 — b12ﬁ¥2)~101 <0 31
has positive definite solution P, then a desired compensator such that the closed loop system in
Fig. 1 satisfies 1)~3) is given by

K(s) = On(s] — A)"'Ba+ D (32)

Wlth
I 0 128712 2 12v1

where

A 0 n :
A= [B A,,-,_]' — Bp(D5D) DL Bz _ [Ezzi]l ’

__“l—Bl YAE) ___[-01 0] __[-DIZ_]
B=1ly ol O Lom o’ 2T bowl

Proof It follows from Theorem 2 and Theorem 3 by showing that R(s)=[C, D] given
by (32) is‘such a controller that the closed loop system in Fig. 2(b) satisfies | Taw || o<y for
the scaled plant P,(s) given in 20).



No. 6 He. Robust Sub-Optimal Control with Robust Regulation Performance 709

4 Example -

- Consider the D. D. manipulator with two degree ¥
of freedom shown in Fig. 3, where 8, and 6, denote Y IR S S A N
the angles of the joint 1 and 2, respectively. As well-

knbwn, this is a nonlinear system. In order to use yaN
linear control theory to obtain a desired performance, k ' ),2
an effective approach is the linearization with cettain
nonlinear compensator using parameters of plant. W
However , ‘when there exist some uncertainty in the i,

parmaeters caused by unknown varying weight, un- e

certain viscosity, et al.;, then the linearized system z
0

can be represented by the following linear model with
nonlinear parameter perturbation Fig. 3 Equivalent system with scaled plant P
‘ § = — (Jo -+ AT)TUAFO + (Jo + A7)V g, G
where 8=[6; 6, ] and u is the control input of the linearized system. The matrices Jy, 4J and
Af are given by ) '
' [J10 + Jao + 2ja0cosBy  jao -+ jsecosdy)

Jo = ) ) - (35)
L Jao + Jacosby Jao J ’ ;
Ajs + 42 + 24j55c088;  Ajs -+ Ajscosd. v .
AT = [45 | J2 ] Ajscosty  Ajy ‘Js 2] , (36)
45z + 4jscosd, 43, J
— 243530,055in8, — 4j40%in sind
Af:—-r .73136.2. Jaths z'I, 37
L 4jefising, |

with jio==msf+malf-+1,, jag=mys§+I; and jso==msls,, where m;, L, s; and I,-~(i=‘1,2) denote’
the mass containing the weight, the length of link, the mass center of link and moment of inerti~
a, respectively. 4j(i=1,2,3) denote parameter perturbations caused by unknown varying
weight et al. - ) ' e .

Define the 4 X1 state vector z==[47 67", Then, (A34) is expréssed by

where the w denote the 4 1" disturbance input vector; and
[0 0l [7] 44y 0 [4Ba1]
4= s Bo== s AA = s AB = R
lr o Lo/ Lo o Lo
o1 o3 o5 o]

e P P

Assume that the parameter perturbations satisty bounded condition |o;|<Cd;, s2=1, » +8 for giv-
en ¢;(4==1,°2,8) and the r is measureable.

We considér the design specifications as follows,

S1) the closed loop system is robust stable for all ¢ satistying |o;| <Cd;, =1, 00, 8’6

S2) for given positive definite matrices Q and E and scale Y the system response of distur-
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bance satis'fi&s
J:(JBTQ&' + TR <Ly, Y w& Ly 39
53) for step reference input of the angles of joint y, which satisfies differential equé.tibn..
=0, - 4®
The regulated error defined by e;: =y— l_r?} ¥r go-to 0 fof all uncertainty. ‘

Define a pen:;tlty signal by '
2 = mlﬂx—{— ro-lu, ’ (41)
Lol™ " Lml | |
then the specification S2) implies [|zl|;<yllwllz, V w€ L, for all uncertainty. It is equivalent to
the performance requirement 2) in section 1. Hence our design problem is equivalent to finding a-
feedback controller ==K (s)e such that the closed loop system satisfies preformance requirement
1)~3) in section 1. h
Since the uncertainties 44 and AB can be described as the form (4) by defining the

matrices

ing [, 92, 71 04 05 Oy v 0§
2(5)_(1‘38[619 62’ (33’ §4’ 55’ 66’ (57’ (53:],

1 0 ] "0 ;0]
rsl & 0 0:id 6 0 O'I 0 1 ) 10
BE= 10 0 & 6: 0 0 & & |, F,=|1 0] |, Fp=10 1}
L0 T o | 0 1 1 oo
K 0 1} ]
and z is measurable, the K (s) can be found from Theorem 6 with A,= [0 g:} and: B, =

[
lo 1)
We now consider the physical values of the D. D. manipulator used for experiment as Table
1 and the bounds of uncertainty as Table 2 in which about 209 parameter perturbations are con-
sidered. When @Qy==0. 17, R=17 and y=1, the Riccati inequality in Theorem 6 has positive defi-
nite solutin '
. 1623 0 3.1623 0
0 5.1623 0 - 3.1623

— (42)
3.1623 0 8.1623 6
0 3.1623 0 8. 1627
for the scale A==1." Then, a desired controller is obtained by Theorem 7 as follows
‘ 3.2650 0 15811 1 3.5813 0
K{(s) == . (43)

0 3. 2654 0 1. 5811 —}; + 3.5813
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Table 1 Physical‘ Values

my mp 4 L . 8 s I i 1,
'5.1622 - 16786 0.2500 - 0.2200  0.1116  0.1012  0.1069  0.0088
kg - kg m’ m: Sm o, ckgm? T kgm?
Table 2  Values of 8 o : .
é - 8, by 84 s 8 & P

0.0678 0. 0006 0. 4164 0.1742 0.1187 0. 0701 0. 4674 0. 1521

Fig. 4 shows the experiment results using the controller for different weight, where 7;(i== 1 s
2) is the torque intput. It is shown that the system has relative good performance for Uncertain

parameter perturbation.

- 9,/rad | o /kgm
' e —
/.
A 10. 0 10.0
t/s s
-2.5
2. ~82/rad : ) L T/kgm
5 : - ]
P ,
/ %\
0 / 10,0 1] (0.0
t/s - tfs .
~2. 5L .
(a)  Experiment result with wight of 0[gm ]
5. hi/rad : L ke

10..0
tfs

0 - 10.0 ‘ Of—

—2.5 —1

25 Ozy/rad ’ ‘ , | 1#?(3:1\
0 10.0 A N— 0.0
i/s t/s
NG e
—2.5 — -

(b)  Experiment result with wight of 500 gm]
' Fig. 4 Experiment result
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5  Conclusion

In this paper a synthes:'s’ problem of H., robust sub-optimal ca;:qtmi with robust regulation
performancs is investigated for plant with structural uncertainty. It is shown that the problem can
be reduced to H.. standard problem for a plant with a Scaling parameter A, The design example
applying the presented zipproach to D. D. manipulator shows the validity of the solution given in

this paper.
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