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An Iterative Leammg PD Longltudmal Controller for
Unmaned Land Vehlcles
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Abstract; For the velocity-following problem of a unmaned land vehicle, the iterative‘learning : :
PD controller is shown to be adaptive with respect to highly nonlinear dynamics by properly choosing
the control gains and training factor. The choices for the gains hardly depend on the nonlinear dynam-
ics. This paper presents a learning control scheme that provxdes the ability for machines to utlhw their
past expertenoes Experiment results are presented to validate the concluswns
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1 Introduction v ‘ , ,

In recent year, much éttention has been focused on individual- vehicles auktoyrnated_gr»ounyd
transport; as one anticipated future transportation problems., A facet which ig commonto this
classes of automted ground transportation is the -velocity control of individual vehicles. A number
of efforts have been devoted. The velocity controllers of :the land vehicles were. initiated in the
late 1950% in a joint venture by the Radio Corporatlon of Amerlca, Generai Motors Corporatxon
(GMC), and involved vehicle control at speeds up to approxxmately 13. 4m/s. subsequent the
feasibility of automated roadway systems was a topic of much research in the 1960%, 1970’ and
1980’ (Caudill al, 1977, Garrard et al. 1988, D. H. McManon et. al. 1990‘)., Longitudinal
control strategies of land vehicles are necessary to regulate the velocity of each vehicles. The lon-
gitudinal controller algorithm must insure good performance over a variety of operating pomts and
external conditions.

On the other hand, the PD control has been widely used in industry for decades. It has been
shown in practice that a PD control law can be effective not only for lmear piants, but for com-
plicated nonlinear system as well. However s the classical PD control law can not make the track- .
ing error arbitrarily small. Now most of the research in the control of complicated nonlinear sys-
- tem has used more complicated control law. At the same time, practicing engineers are reluctant
to use more complicated control laws, because these control law are not easy to implement and
generally require more information about the controlled systemn. HEEREE

In this article, the velocity following problem of a land vehicle is consideréed fusfrig adaptive

PD control. It is shown the adaptive PD controller is applicable to the highly nonlinear vehiculary
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velocity-tracking problem, and the tracking etror can be made arbitrarily small. Experimental
and theoretical results are précented to validate the conclusions above.
2 Problem Formulation
Consider a class of nonlinear dynamic systems which can be described as follows ;
LX) = £XW@ D + g(X @O0, 1.
y(t) = "X (D). ¢3)
Where X (2) ER“*1 , () ER and y(¢) €R are state vector, input and output, respective-
ly. F(X@),8), g(X@,0 éR‘X‘. Nonlinear function vectors are assumed to be Lipschitz con-

tinuous as follows

I £ (X0 — F X || S SFoll X — Xe | €))
and e — 9K | <ol X~ Xl , “
Where fo, go are pasitive constants. || ¢ || denotes the vector norm | ¢ || w CTERY", OT=

[eisgn(X), -+, 0880 (XD 1,V >0,

Now, when the desired trajectory y(t) is specified as a reference input for system 1) @,
the fundamental control problem is to find a control input #(¢) with which the system output y{(£)
follows the reference input y,(¢) for all t& [0,¢] as close as possible. Within the framework of
learning control, this objective can be stated as follows

Problem Statement . )

Suppose that 9,(¢) (¢€[0,¢]), the control problem is to find a sequence of piecewise con-
tinuous control input #/(£) ER, (¢€ [0,¢]), for the uncertain system (1) (2) with which the
system 6utput yi(¢) follows y,(¢t) with a give accuracy ¢ as follows

ly(t) — P | <&, forallt € [0,6].

where j denotes the jth iteration. The resulting learning control system is échematically

shown in Fig. 1. /
Where sgn( » ) is defined as follows . memory learr;ing
. f 1, 5.'(15) > 0’ ' controlter
sgn (1) = 10, BH =0, (& y
—_ l, ig(t) < 0’ ‘ i o -+ P.D. ” » Plam‘ y(ts

e(t) = y. (& — y(O.

Therefore, we obtain a continuous func-

i Fig. 1 Schematic diagram of the leamﬁm controller system
ion, .

e() = Dalua®l, Vi, a=>1 (6)

i=1

In Fig. 1, “memory” describes a unit, which memorizes the past inputs.
3 Stabilization of the Dynamic System

The tracking capability of the iterative learning process hinges upon the stability of the
closed-loop system at each iteration. Therefore we firstly design a PD controller which, when 'ap—

plied to target system (1) (2), forms a stable closed-loop system. However, the tracking' error
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can not be made arbitrarily small, then we introduce a learning controller in the feedforward
loop, which provides tracking of the enire profile of y,(t) over a sequence of iterative operatnons

At the initial stage of learning the appropriate feedback gains are selected that ensures system sta-
bility with an initial error bound of £(0) much greater than the prespecified target tolerance e.
Then the feedforward learning controller reduces the system output error, every iteration and fi-
nally makes it smaller than & The following thcor_em formalizes the learning operation by means

of feedforward input correction 'strategy.
Theorem  Assume that u, (¢), [C7g( + )| and |—~(0 (+))7| are bounded as

follows .

SUP fug () | <<y < o0,
< O,t '

SUP |(CTQ( )) H ro<oo, ‘ ‘ D
sup | S0 ( )7 <m<oo.
1€[0,¢ j

Furthermore, assume the vector C7==[C\sgn (X{),++,Cosgn(XN],V e:>>1, where Xi(t)
=X, (¢) — XI() == ((FH(#) )ux,). The feedback gains k,, k, satisfies the following inequalities .
B re. , L ,
2k, > pA4m + 27‘0 | el oo(fo + gouo) »
1>8>0.
Then, with the iterative learmng algorithm .
W) = () + u}(t),
W () = uf" () + BeI(),
w(t) = kel () + kel (D),
J=1,2,3,-.
the system (1) (2) converges as follows;
DR ORSZION |
) imgd () =9.() or  WmX{D)=Xd, 1),

)—»00
i) Emuf(e) =u(t).
J-*oo

where e/ (¢) =y,(¢) — 37 (¢) , u,(¢) denotes the des1red control input for the desired trajectory
y:(¢). the index function V/(¢) is defined as | : .

Vi() = ﬁaﬂ(»r)af(r)df> 0 @

for all t€[0,¢] in which @/ (¢) =u, () —u}(¢). u}(¢)=0 for all t€ [0,4] and #(0) =0 for all
Jo B is a continuous variable with respect to the tracking error e(¢):

Proof of theorem Let 3,(¢) =0"X,(¢), y({)=CTX(t) and 4% (¢) =w*1(¢) — @ (£). Then
learning rule is described as : ; S S
4 () = wf () — w1 (t) =— pei(t). . e 9)
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Now, &/(t) =y, (t) — g/ () =CTXi(t) = ;0;'2;(&) |>>0, where ¢/(£) is continuous function for
all ¢, bﬁt it is not differentiable at X =0. It :i:;(t)#O, we get
S =0T , .
=— Tg(kel(®) — CTg( kW) + CTF() + C"g(Dus + C’fy(')ﬁ"(ﬁ 10
where F( ¢ Y=F (e, ) —f (@ (@) ,t), §( » Y=g (zs,t) —g (@ () ,0).
Now, when j=1, u,(¢£)=0 and

Vi(t) = J:‘llg('f)‘ll;(’()df < oo forallt € [0,¢].
If we define AV’:(t)=V"+1(t)—-V"(t) , then
AVI() =J:)(A1;"(7)A175('r) + 24w (v) 4 (7))d7.
| ———ﬁzJ’;ezf(r)d‘r - 2p£ef(1)ai(r)df. an
Because e(t) is not differentiable at (0)=0, .(11) can be described as follows
AVi(e) =lingJ‘(Az—:f(1)Aﬁ"(1) + 243 (D)W (%) )d7r
=lixroxf(ﬂ2ezf(r) — 283 (v)W (%) )dw. az
Here, note that é"(t) and #/(t) are the continuous function for all {, we get
AVID) =ﬁ2J;ezf(r)dr - zﬁﬁe«r) (gL + CTg(HEIEW®)
+ Tg(ke?(v) — CTF(+) — C7G(+)uy) Jdv
=— Bk, + (CTg())DeH(t) + ﬁJ;ez’(V) & (erg ()10
— J’oczﬂk, — Beti(v)dy — j ;Zﬂ(C"y('))"’[C”f + CTguei(v)dv

<— Bk, — |(CTg(+))1]eB(t) — j;Awf(f)df,

A () = (2pk, — Be(%) + 2p6 (1) (C"g (D) HCTf + "G ()u) — /?Ed;((?"g(’))"‘ez"(ﬁ)
=eH(2) B2k, — B — 11) — 2610 || O || () (o + o) | X | -

Note ei(£) = ;‘c..u..(o 1> || X || c0» when c;=1.

Therefore, we obtain

(7)) == B () B2k, — p— 11— 2ro || O || (o + gaued ] (13)
I 0<p<1, k> [(CTg(-)7],
2k, > B+ 7+ 2r0 || 7| (Fo + gouod
we obtain Mw(v) =0, 4Vi(z) < 0.

Hence, the sequence {V/(£)} is monotonically descreasing, wich confirms i). Because ¥ (t)

is bounded, the montonically descresing nonnegative sequence {V7(£)} connverges to a nonnega-
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tive fixed value. V’(t)-»O as j—>oo. This implies that e/(¢) converge to zero for all te [0 AR
because AVI($)<0, this implies ii). Finally. because Vi(£)—0 as J>co, we have iii). Further-
more, we have
lil,nX’(tt) '—'=.X¢(G)» .
J+oo X
 On the other hand; £ is a continuous variable with respect to the tracking error e(t)’; and 0
< p< 1. we obtain

{.30< L, ey >=1 (14 '
Bo(el(8))?, () < 1. L
Q.E.D.
Note that, in order to avoid overshoot, we have (14). '
4 Application
The system with PD learning con-
troller was implemental digitally as the fol- [ remm vaoai """ |~ opsmis s
fowing form.
~ We use a Mcs-51 microcomputer. At TADC o
the beginning of a typical sampling control | 0808(8uits) Mes 0832(8 vits)
period, tﬁe speed » was sampled and con- S Fig. 2 Digital control system

verted to a digital format.” Using PD learning control law, the samples were processed. After a
processed time, ‘the processed sampled signal was ¢éonverted to an analog signal, ‘held and apphed
to the plant. - After a time of some 400fis; the process above is repeated. Génerally the same txme
T was selected by considering the closed-loop bandwith of the system.  Here the samphng txme T
was chosen as 400ms which is well. o

“WS631” automobile was employed for the full— scale testing. The control functions of
bracking and accelerating were accomplished via electrohydrautic control systems. In particular,
the actuator which controtled the position of the throttle value, was characterized by a corner fre- '
quency of some 7rad/s. A computer, 18 potentiometers, and other necessary components was in-"
stalled over the seat. ‘The computing elements were used for control ‘and daté collection. The ve-
locity v is measured via a carefully cahbrated tachometer connected to the drive shaft. Alf- testmg
was conducted on a 50 X 50 m? square. e ‘ g
The vehicular longitudinat dynamics, whnch has ‘been’ expenmentaﬂy venfxed, is’ ngen by '

(5] 3 o
a:,(t) 0 R e 2 ()T
)= | 0 . I 2@+ | 0 Ju. S 15y
A0} —a3(v) — () —a @] ) lew)

Where #=v, z;=9, 3=, v is the forward velocity of the vehicle. u is a voltage ,» applied’ -

to an electrohydaulic actuator, which controls the throttle value. '
a1 (») = 0.05 + &(v) + 1/t,(v),

a2(v) = 0. 052(v) + (£(») + 0.05)/4,(2),
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as(v) = 0. 06&(v) /,(v), .
where t,(v) is a function associated with the propulsion system and its interaction with the road-
way interface and £(v) is a function associated with the tire-roadway interface. The parameters
t,(v) and &(v) vary substantially over the velocity range of interest 0<<v<(10m/s and may be

represented functionally as

¢ =i YO =TT 0w
which gives @y (v) = 0. 4167 W, »
ax(v) = 0.0208 l +'gfi'j + 2043,.‘
<_13(v) == Zi——i

Therefore , as v varies over the velocity range of the interest, 0<<v<{10m/s, 0<{9<C4m/s?, 0<C
9<1m/s?, we have ) :
O == [sgniv — v) sgn(® — v sgn(® — )],
ro= 0.5, 7, =006, uy=28, fo=47.2, go= 3.
The gains of the PD léarning controller were chosen to be
k, = 45.0, k, = 42.0, o= 0.69.

In -fact, Lyapunov’s direet method is very conservativé in general, which in turn implies
that inequalities in theorem are conservative. Thus, reasonably gains work well evéd if they’ may
not satisfy some of those three inequalities.” On the other hand, if the gams k,, ks B of the PD
learning controller were chosen to be too large, the larger overshoot would be generated. There-
fore, we should choose reasonably large gains.

k, = 45.0, Kk = 42.0, .
0. 69, &) =1, (16)
- {0. 69Ci (1)), W) < 1. .
Fig. 3 contains the experimental results, which show asymptotic stability of tracking a giv-

en velocity.

First, vs==1."7Tm/s was given. Second, v,=

v()/m s

3. 8m/s was given. It shows good tracking perfor-

mance over a variety of operating point and exter-

nal conditions. The overshoot is very small and
v, () /m o 5!

A By A
3o PR

e(c0) == (), the vehiculary velocity » (¢) and the

revs of the engine »,(¢) are represented by plot (1)

and plot (2) respectively. Some tests were con- s

ducted on country roads, experimental results were Fig. 3 Experiment results
very closed-to the results in Fig. 3. Therefore, it is shown to be an adaptive and robust control

scheme for the tracking problem of the vehicle velocity.
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5 Conclusion .

The PD learning controller is shown to be an effective controuer for the complicated nonlin-
ear system' In this paper, we show a theoretical proof. It guarantees that a learning PD control
law can be used for the complicated nonlinear system. This result also provxdes a constructive al-
gorithm for choosing the control gains. Experiment results are presented to validate the conclu-
sions.

The results in this paper significantly improve previous results..
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