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Abstract: A new method to performance robust state estimator design is presented for linear continu-

us systems- The primary purpose of this paper is to find the set of filter gains such that the error variance
or each system state is less than or equal to some prespecified values while the noise intensity is uncer-
qain. A numerical example is provided to demonstrate the directness and simplicity of the design method.
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Introduction

tis quite common in state estimation problems to have performance objectives that are ex-
d as upper bounds on the variances of the estimation error. For example, in the problem of
ng a maneuverable target, it is desired to obtain filter gain such that the estimation value of
ystem state is situated in the prespecified effective region. Clearly, this performance require-
t can be described as upper bounds on the estimation error variances of the states. Several in-
approaches attempt to achieve these constraints, for instance the theory of Weighted least-
estimation'J minimizes a weighted scalar sum of the error variances of the state estima-
{owever, minimizing a scalar sum does not ensure that the multiple variance requirements
. satistied. .

The error covariance assignment (ECA) theory?) was developed to provide an alternative
Qre straightforward methodology for designing filter gains which satisfy the above perfor-
objectives. This methodology could provide a closed form solution for directly assigning the
ied steady state estimation error covariance P, where the diagonal elements of P could be
"~as.the desired constrained variance values and the off-diagonal elements of P were arbi-
~ On the other hand, [3~5] studied the covariance assignment control (CAC) problem,
t was surprise that'®! no apparent duality appeared between the ECA theory and the CAC the-
Furthermore, there were very few papers dealing with the robust state estimation for uncer-
ystems, such as systems with noise intensity uncertainty.

Among many practical systems, the intensity W of the measure noise w(f) can be accurately
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computed but the intensity ¥ of system noise »(#) is not this case. Fox example, in the Dropy
of tracking a maneuverable target, the intensity V' means the maneuverablity of the target é
can not be accurately measured. Owing to the above important reason, an attempt will be mé
in this work to design the performance robust state estimator such that the error variance for ea
state always meets the specified constraint while the intensity V' of the system noise varies betwé
0 and V. Here, V is supposed to be the possible maximum value of V. It should be pointed'
that the ECA theory can not be applied again in this problem because the assignability conditjq
[2] is closely related to the intensity V.

The present paper is organized as follows. In section 2, the problem statement is introdugg,
Section 3 studies the robust state estimator design for linear continuous systems. An illustraﬁ
example is provided in section 4. Finally, section 5 contains a conclusion.
2 Problem Statement

In this paper we propose the robust performance state estimation problem. Instead of a scal
cost function, the design objectives are inequality constraints on all state estimation error va
ances while the system noise intensity varies between 0 and V. The plant considered here 1s
following time-invariant stabilizable and detectable system

(1) = Ae(t) + Bu(®) + (1)
and the measurement equation )
1@ = Ca(@®) + w(®) ' 5 (1
where & R" is the state, #& R" is the deterministic input and y € R? is the measured outpup;
(2) and w(t) are uncorrelated zero mean Gaussian white noise processes of intensity ¥>>0 and
>0, respectively. The initial state 2(0) has mean 2(0) and covariance P(0). The state estimi
vector z(t) is generated by

T (1) = 45(t) + Bu(t) + K1) — C2 (1)),

whose estimation error covariance in the steady state is

P = limP(t) = hmE[e(t)e @]

oo
where ’ e(t) =z(t) —z(t).

Now, let 0?(i=1,2,+,n) denote the constraints on the variances of the estimation err6
Then our goal is to find the filter gains appropriately such that the requirement

[Pli<aot (i=1,2,-,n).

are always satisfied while intensity V vaties between 0 and V. Here, [P ;s the ith diagonal
ment of P and the performance requirements ¢?(i=1,2,++*,n) may be determined via comp¥
tion or expenmentauon Of course, the error variance constraints of should be more than ot € i
to the minimum error variance A7 which can be gotten via the optimal mean—square filter theol’

Using the above exposition, the problem statements may be formulated as follows: Giv
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ance constraints 02(i=1,2,++,n), determine the set of filter gains K such that the esti-
aria
errof variance value for each system state satisfy the specified performance requirement

, the condition (3) will be satisfied, while V' varies between 0 and V.

Main Results and Proofs

jn order 10 solve the previous problem, we start with the follwing well known resultt?

e(?) = (4 — KOe(®) + v(@) — Kw(t), 4>

P@) = (4 — KOOPQ) + P()(A4 — KC)' 4+ KWK" + V. 5

1 (A— KC) is a stable matrix, then in the steady state, we have the algebraic version of

‘as (see[2])
0= (4— KC)P + P(4— KO)' + KWK* +V (6)

re its solution satisfies P= PT>=0.
Now, we want to seek K such that the specified requirement can be satisfied. Here, we de-
a positive definite matrix Y satisfying
) (Y] <oty G=1,2,,n). | (7
_Using the matrix ¥, the equation (6) may be expressed as
(A KO (P—Y)+ (P—Y)(A—KC)"+ (4—KCYY +Y (A— KC)T—‘;—KWKT+V-— 0. (&
rom the Lyapunov stability theory, we kow that if ‘
(4 — KO + Y(4 — KO + KWK® +V < 0 (9

then (P—Y)<C0 by virtue of the stability of (A— KC), i.e., A(A—EKC) GC,, where C,
€1|Re(s)<0,¢ is a complex plane} and A(Z) denotes the eigenvalues of matrix Z.
Qnsequently ,
[Pl < [¥YJe Gi=1,2,,m). ' (10)
lear that our purpose is to choose K such that (9) is satisfied subject to (7).
qu we cohsidef the robustness of the filter gain K, i.e. , (9) is always satisfied subject to‘
n spite of the system noise intensity V varies between 0 and '17.’ It is easy to see that if
(4— KO)Y + Y4 — KOt 4+ KWK" +V <0 (an
- then (9) is true where 0V <(V.
By defining K,=YC"W™1,
n be rewritten as )

— (AY 4 YAT — YWYy + V) > (K — Ky)W(K — Ky)". (11
Assume that
AY + YA — YCTWTIeY +,I7<0 (12
ds and choose a positive definite matrix @ whose eigenvalues are appropriate such that the fol-

ing inequality
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—Q— (A + YA YWY + V) =0

ith the left side of (13) is of maximum rank p can be satisfied, then the equation

— Q@ — (A + YA —YO"WTICY + V) = (K — K)W(K — K7,
or

(4— KOY 4+ Y(A4— KO + KWE™ +V =— .
will yield (11/),(11),(9) and (10).
Now, by defining
- LY =—Q — (AY 4+ YA" — YC'W™'CY + )
with L& R*¥?, equatioh (15) becomes |
LLY = (K — K )WYVWYA(K — Ky)7,

and we have

LU = (K — K, )W'%,

or

K =YC"W- + Luw—/?

where U is an arbitrary orthogonal matrix with appropriate dimension.

It shouid be noticed that, if the conditions (12),(13) hold and Y>>0 is specified a prio
then all (4— KC) which solve (14') are stable according to Lyapunov stability theory.

The following theorem states the main idea of the design method to robust state estlmatlo
for continous systems with error variance constraints and noise intensity uncertainty.

Theorem 1 Consider the system (1). If there exists a positive definite matrix Y which S
isfies (7) and (12), the desired filter gain K which makes the estimation error covariance P m
(3) subject to 0<IV'<{V can be chosen by (17). /

Remark 7 We can see that condition (7), (12) is very easy to test and the filter'gain K i
very easy to calculate. It is the difference from the traditional filter theory.

Remark 2 It is apparent from the above results that the possible filter gainé (17) satisty ’
desired performance requirements is a set because the problem considered here is a multiobject
design task. The study of exploiting this freedom in Y ,(,U/ to meet other petformance yobjectyiV¢
still requires further development and investigation.

Remark 3 The research of constructing ¥ directly from the explicit conditions (7) an

-{12) is important but difficuit. Similar probiem arised in [ 2~5]. It still requires further study

Next, the following well known results will provide the conditions for the existence of post
tive definite solution of inequality (12) and help us to solve (7) and (12).

Lemma 1 (sufficient conditions) If W>>0 and (4,0) is controllable, there exists a sym,

metric positive definite solution to (12).
In fact, if’(A,C) is controllable, the equation

AY + YA — YOWTOY 4V =— R
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ve ungiue positive definite solution Y for an arbitrary positive definite matrix R.

1ha . _
ma 2% (Necessary conditions) Suppose that W>>0 and (4,V"?) is controllable. If

 exists 2 positive definite solution to (12), (4,C) will be detectable.
1¢ Algorithm to design the robust state estimator

' Step 1 Determine the constraints of (i=1,2,°:*,n) on the estimation error variance and
L possible Variational limit V for the system noise intensity (0% and V may be gotten by the per-
5rmance requirements of practical systems).

Step 2 Solve inequality (7) and (12) with the help of Lemma 1, 2 and then obtain Y.
step 3 Choose a proper positive definite matrix @ such that (13) holds.

Step 4 Obtain desired filter gain K from (17).

A Numerial Example

Consider the system in equation (1) with =2 and the system parameters
A = [O O} ¢c=1[0 1] =1
== . B = W = 1.
10 ’

1t is assumed that the constraints on variances of error estimation are
ol <2.8, 0§3<<1.7

:the possible maximum value of V is

i
l
1

~Using (7) and (12), we can obtain i
[2.8957 1.6125]
~ L1.6125 1.7958]

“From (13), we choose

en we have
2.4 0

LLT=[
0 0

}, L=1[1.5492 07.

Finally, we can obtain the desired filter gain from (17)

K = [3.1617 1.7958].
Conclusions
The purpose of this paper is to design the filter gain such that the error variance for each sys-
N state is less than or equal to some prespecified value in spite of the system noise intensity
aries between 0 and the possible maximum value. The present design methodology is based on

Yapunoy stability theory. The main result of this paper can easily extended to discrete systems
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and systems driven by the colour noise. These results will appear in the near future.
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