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Abstract: This paper first gives a decentralized scheme for bounded input bounded output
(BIBO) stabilization of a class of large-scale systems without perturbations in each subsystem,the
only stabilizability condition is the uniform complete controllability of the subsystems. Then the
problem of robust BIBO stabilization of the large-scale systems with nonlinearly perturbations in
the subsystems is considered and the bound of permissible perturbations is obtained by using a sta-
bilizing local state feedback. Finally.we apply the obtained results to the single linear system and
improve a previous result.
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1 Introduction

The theory of large-scale systems has made great progress in the past twenty years.,
also many papers have been published on the stabilization of large-scale systems™ !, In
particular,lkeda and Siljak" proposed a decentralized control law to stabilize exponentially
the linear time-varying interconnected systems. However,in general,it is expected that the
control systems can track input signals. In this paper,we first discuss the BIBO stabiliza-
tion problem of large-scale systems with reference input signals. Based on the matrix Ric-
cati equation, by making use of the scalar Lyapunov function and combining with the Bi-
hari-type inequality,we present a class of linear interconnected systems with reference in-
put signals which can always be BIBO stabilized by the local feedback control*®. The stabi-
lizability condition is uniform complete controllability of the subsystems.

On the other hand,the robust stabilization problem of control systems in the presence
of uncertainty has been receiving considerable attention,because in many practical control
problems, uncertainty often occurs in systems due to modelling errors. measurement

errors , linearization approximations , and so on . Many design techniques for uncertain
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systems have been developed to guarantee a required degree of robustness™*, However.
most of these papers only considered the robust stability and stabilization in Lyapunov
meaning. Wu and Mizukami® dealt with the robust BIBO stabilization of single uncertain
linear systems. By using the presented approach,we discuss the robust BIBO stabilization
of large-scale system with nonlinearly perturbation.By a robust linear state feedback con-
troller we can guarantee that the large-scale system is BIBO stable. The obtained result is
applied to the single system™ and enlarge the allowable perturbation bound given by Wu
and Mizukami®®,
2 BIBO stabilization

Consider a large-scale system S composed of N interconnected subsystems S, de-

scribed by the equations
N
" . 7
Si: x = Az + \4' ;B;Fi,CjIj + B, Yi = Cixis == 1,2,,N, @]

i=1

where x, () ,u,(¢) . v, (t) are n;,r;,m; vectors, A, (t),B;(¢),C;(¢),and F,;(¢) are matrices of
appropriate dimensions with time-varying elements which are measurable and bounded on
every finite subinterval of time z.
lkeda and Siljak'™ proposed the scheme for exponential stabilization of the large-scale
system S. In general,it is expected that the control systems can track input singals.such as
step function. The main objective of this section is to find the decentralized local state feed-
back control
u, = Kix; +riy 1=1,2,-,N, 2
where 7,(z) is the reference input signal and K;(¢) is the feedback gain matrix - of
appropriate}’ dimension with the elements having the same properties as those of A, (£),such
that the large-scale sysrém S is BIBO stable. Applying the state feedback controller (2) to

the system (1) yields a closed-loop subsystem as fcllows:

S.-‘: & = (A, + BK)zx, + ZB,'FUijJ +Br. {=1,2,~,N. (3)
J=1
Definition 1 The signal vector #() = [ri,.ry " € LL i |r&)]. 4

SUP(,00) 7@ || <Coo.

Definition 2 The system S is said to be bounded input bounded output (BIBO)
stabilizable by the local contrcl law (2) if there exists a feedback gain matrix K such that
every solution x(z) of the closéd—loop system S satisfies

2@ | <6, 1l7@ || +06,, (4

where 0, and 8, are positive numbers.

Theorem 1 The system S is BIBO stabilizable by the local state feedback (2) if every
subsystem S, is uniformly completely controllable.
Proof According to the results in [ 2], The uniform complete controllability of the

subsystem S, implies that the matrix Riccati equation
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P+ ATP, + P,A, — P.B,BfP; + NI, = 0, i=1,2,,N (3)

has a solution P, () such that
§1, L P, < vl (6)
holds for some positive numbers &,,7,,and all 2z, The inequalities (6) meaun that P, — &1, ang
y1; — P, are symmetric nonnegative definite matrices,where I, is the », X »n, identicg]

matrix, With this P,, we have the local state feedback gain
K,’:_%B,T[>” i = 192*"'91\79 (7)

where A,(#) is an arbitrary scalar function,which is measurable and bounded on every finite
subinterval of time,and which satisfies the inequality ‘
N
LI
hi =1+ 2_43‘

Jj=1

for all 2. Define a scalar Lyapunov function

| £,C; 1% (8> 1 constant) (8)

N
Vt,a) = 2zl Pz, (9
i1

for the overall closed-loop system S given by (3). The function V of (9) satisfies § || & || 2
LV 7| x| ?*for all £ and z,where & = min;{&),7 = max,{7,}.
Now ,we calculate the total time derivative of the function V (¢.2) with respect to (3)

as follows

j=1.

N N
V= Z‘: (af[P: + ATP, + P,A; — hPB.BIPJa, + > (BiF,Cia)"Pix,
N 4

+ .r,TP,EB,-[",jC_,x, + (Bir))'Pix; + xf PBir;)

J=1

N
gz{x?[_ NI, — (b — DPBBIPJa; + 2 | B i |l |l
=1 ‘

N
+ 2 > 7T (FCHT(BIPx) )

=1

N N
\<\Z{“ Nia|?®— 282 I F,C; | 2 PBBI Pz, + 2 | PBi || |l 7
i=1

i=1

+ ZZ N EC I BIPi | )

N N

== 22[5‘] Izl — ol £,C 0 || BFPa;

i=1 j=1

]2
F N =D a2l BB ) 5] ]

N"\
<2[=NaA=8Dlal*+2|PB | |l

i=1

o (10)

Noting that Z,N:] fTall < NE:_V:I lzi|? = VN |z| .we get Z\_l | <
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JNEWY2 and

V<— 2A1V+A2V“2q (11)
where 24, = N(1 — 879 /9,4, = 2 ¥V N/E max,{ | P.B: || } | @) || . This yields that

h ”V <V, + )‘ZJ (“'0)[3“1“"’0)V(5)]”2ds. (12)

[

By the Bihari-type inequality [5,Theorem 1. 3. 1]. we obtain
STV L[V ) ] + '%"‘zft ehTds ) (13)

f

After simple manipulations,we finally obtain for any t = ¢,

=A =ty /1 At
||x||<,/K “L—{[V(t)]”z A€ )+_2_;_;(1_ea1( 0))}

S
NV () L
JE 24 V' E

where 8, = N max,{ | P;B; || }/&A,0, = v7/& || (¢,) || . This proves Theorem 1.
3 Robust BIBO stabilization

Now ,we consider an uncertain large-scale dynamical system with nonlinearly pertur-

<

<ﬁ1 ” r() Noo +82’ 14

bations in each subsystem. Then the state space description of the closed-loop system can

be rewritten as
N
= (A + BK))x + ZBiFfjcjxj + (B; + AB)r; + 8is i = 1,2, N (15)
j=1

where AB; is the input uncertainty and bounded [3],and g;(¢#,x;) is a nonlinear perturba-
tion vector caused by the input uncertainty and others and satisfies: .
lgiGrx) || <b . (16)
A system is said to be robustly BIBO stabilizable,if it is tolerant to change in certain spe-
cific bounds of perturbation.
Theorem 2 Let P; with the condition (6) be a solution of the following Riccati equa-
tion
Pi+ (A + al)'P, + Pi(A; + al)) — pPBBIP, + Q = 0, i=1,2,-,N, (17
where a and g are positive numbers,Q,(¢) is a symmetric matrix and satisfies ,J, < Q, <
&1, for some positive numbers 7,,§;,and all ¢. Suppose s is the number of max{ || F,,C, | }
# 0fori = 1,-,N.If every subsystem S, is uniformly completely controllable ,and if the
Perturbation g;(¢,x;) of each S, satisfies (17) and
miin{2$,a+r,~s—~2b; NP} Aw>0 (18
then the system (16) is robustly BIBO stabilizable by the local state feedback (2).

Proof This proof follows directly from the proof of the Theorem 1. We choose 4, in
(7 such that
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N

he—p= > I FC (19)

Jj=1

Without loss of generality.let max;{ || F;;C; || } # 0 fori=1,.s and max;{ || £,C, || } =
0 for i = s -+ 1,+,N.Imitating the calculation of (11) and using (19) and (20).the

derivative of V (¢,x) satisfies

s N
V<—2aV — 2 > [ all = 1FCH B P T
1

i=1 j=1
N

+ Z[(— 7, + s + 2b; H P, “ ) H X ; :
i=1

+ 20N P+ 18BN BRI ) ]
N
<SU—wla i+ 2B+ 180 2D Nl Inl. o

i=1

The proof of the rest is similar to that of the remainder of Theorem 1 and omitted.
Finally ,we consider the linear system [3]:
= (A+ AA)xr + (B4 ABYu + (B + AB)r. 2D
where # € R",u € R",A,B,and C are known constant matrices of appropriate dimensions,
AA is the system matrix uncertainty,AB is the input matrix uncertainty.

By the linear state feedback controller
P %B[P;r. (22)

where # is a positive number and P is a symmetric positive definite matrix satisfying the
following Riccati equation

» (A + a)'P -+ P(A -+ al) — kPBB'P =— 27Q, (23)
Wu et al. gave the following sufficient condition [3,Theorem 2 to stabilize (22) robustly

(8, + %8,

BIIP ) IPY < ah(P) —7A,Q). 20

where 8, = | 8A || cand B, = || AB || .

Applying Theorem 2, we get the following corollary which improve the condition
(25).

Corollary If we choose parameters @.7,k and a matrix Q such that for every

reference input r(z) € L.
(B 2R BIIPI|IP ] < et () + 7A@, (25)
\ /

then.by using the linear state feedback controller (23),the system (22) is robustly BIBO
stabilizable. '

Remark According to the compatibility of the norms of matrix and vector,we may
take the norm || + || zin (25). Therefore,the Corollary enlarge the allowable perturbation
bound of AA and AB given by Theorem 2 in [3].
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