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Quadratic Stability of a Class of Uncertain Large-Scale
Systems with Symmetrically Interconnected Subsystems
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Abstract: This paper investigates the quadratic stability problem of a class of uncertain large-
scale systems composed of several similar subsystems interconnected with an external system in a
symmetrical fashion. A sufficient condition for the quadratic stability of such a system is given in
terms of two modified subsystems with lower-order and corresponding H. -norms,and it is shown
that the condition is also necessary for the quadratic stability of the overbounding system corre-
sponding to the system.
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1 Introduction

A number of large-scale interconnected systems found in the real world enjoy the par-
ticular feature of having similar units and symmetrical interconnections. Systems with
these characteristics are encountered in electric power systems,industrial manipulators,
computer networks,etct!~*), Recently,there has been a great interest on large-scale sys-
tems with similar subsystems. In [4~6], the stability and decentralized control of the
large-scale systems without uncertainty are investigated by utilizing structural properties
of these systems,and important characteristics are observed. This paper is concerned with
the quadratic stability problem of a class of uncertain large-scale systems with symmetical-
ly interconnected subsystems.
2 System Description

The uncertain system = under consideration consists of N similar subsystems intercon-

nected with an external system,the overall system = is described by the composite equa-

tions
() = (A + A4) 2(1). (2.1
where 2(¢) =2 =[af af - 23T, 2 =2,(t) ER}x; =2:(t) €ER" (T =1,,N),
A=T[A;], G,j=0,1,-,N). (2. 2a)

with Agy = Ao» Ao =Los Ay =M,, Ay =A, (G=1,N),andA;=H, G.j=1,,
Nyi # .
AA = [AAU(t)], (luj = 0&19"'sN)- (2- Zb)
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) 4 &
with D@ = S Agau@®s A = D Lugs(®)s AA®) = 2 Mogo, (2
j=1 Jj=1 j=1
3
AAii(t) = zAUri,-(t)q (l = 17"'9N)1
=1
2
and AW = D Hyry @), Goj =1y Nyi 7 ).

=1
Suppose that
1) the uncertain parameters g;(t) qo;(#)7;(t) sand 7,;(2) are Lebesgue measureable

functions such that

|(Jij(t)l <19 |q.vij(t)| <1, |rij(t)| <19 |r5,'_,'(t)| <_].. (2-3)
2) the matrices Aq;sLoj»My;» A, ,and Hy;are rank 1,and
AOj = alja-zrj, Loj = asjafj, MOj = as','a;;rjg Alj = a”a‘grj, HU = h]jh;j- (2. 4)

This paper is concernled with the following notion of stability for the system 2.

Definition 2. 1'7 Consider an uncertain linear system

2(@) = [A° 4+ AA(g()) J= (@) (2.5)
where z(¢) € R*is the state,q(¢) is a vector of uncertain parameters,which is restricted to
a prescribed bounding set 2 where 2 is a compact set. The system (2.5) is said to be
quadratically stable if there exists a p X p positive definite symmetric matrix P and a
constant @ > 0 such that,for any admissible uncertainty g(#),the Lyapunov derivative for
the Lyapunov function V (z) = z" Px satisfies
L(z,t) =V = 22"p[A° + AA° (@) ]z <—al = || %,

for all pairs (z,t) € R? X R. In the following,suppose that AA°(q(#)) = D°F°(1)E® ,where
the uncertainty F°(z) satisfies F°()TF°(#) < 1. .

Lemma 2.2 The system (2. 5) is quadratically stable if and only if it satisfies the
following conditions:

i) A’ is a stability matrix;

i) | B¢ — AD7TD° || . < L

The above result could of course be applied directly to the system 2 of (2. 1) by using
the notion of overbounding in [9]. But,this involves computing He.-norm of a matrix with
high-order, it may be very difficult to do this. The next section will present a simple
method of checking the quadratic stability of the system 3.

The following notations will be used in the sequel.

a=[ay - auls a=L[au = anls - (2.62)
a=[an * awls a=lag = aul, (2. 6b)
as = [az, = ag,]s a;=lan * aul (2. 6¢)
a;=[an  anls ag=1[an - auls * (2. 6d)

h1.=[h11 h’lk‘:l’ h2=|:h21 hzh]s (2. 6e)
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Am - Al + Hl’ Apo =S Al - (N I 1)H19 (2- 73)
A, NL,

AP_ = [ }s (2. 7b)
M, A — N —1)H,

D [a‘ VR 0 ¢ } (2.7¢)

= b . C
" lo 0 Ng NUg, [N —1)/N)]h,,

a, NYig 0 0 0

ET = { 2 0 / } (2.7d)
0 0 NY2q, NY%aq, [N(N — 1)]%h,,

D, = [(15 a;, (N — 1)1/2h1]’ E, = [‘14 a; (N — 1)1/2}12]» (2.7e)

E; =T[a, as (N —1)"h,]. (2.76)

3 Main Results .

Theorem 3.1 The system 3 of (2.1) is quadratically stable if it satisfies the follow-
ing conditions ;

3.11) A, and A, are stability matrices;

3.1i) | E,I = A)7'D, |« <1and | E.(s] —A)D7D, || .. < 1.

Theorem 3.2 If the system 3 contains no the external system (i.e. , n, = 0),then

the system 3 of (2.1) is quadratically stable if it satisfies the following conditions :
3.21) A, and A, are stability matrices;
3.2i) | E (I —A,)™'D, || <1and || E,sI — A,)"'D, || . <1.
In order to investigate the degree of conservativeness of the above results,consider the

uncertain system 2, defined as follows.

@) = (A + AA)x(), 3.1
where A is given by (2. 2a),
AA = DF()E (3.2)
with the uncertainty F (¢) satisfying
F@&Y'F)<I, (3. 3a)
D = diag{d, d, + dy] (3. 3b)
where
dy="la, a, - a;], d;=[a By e J"?._[ a; hy o Ry, (G =1,,N),
=4
Eip= [fe/ ey =4k &y ] (3.3¢)
where

e, = diagla, a, - a,], e =diagla; h, = h, ay h, - h,].

(G =1,,N),
By the notion of overbounding in [9],it is easy to see that the system 3, overbounds the
system Z. For the quadratic stability of 3,, we have
Theorem 3.3 The system Z, of (3. 1) is quadratically stable if and only if it satisfies
the conditions 3. 1i) and 3. 1ii).
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Theorem 3.4 If the system 3 contains no external system (i.e.; n, = 0),then the
system 3, of (3.1) is quadratically stable if and only if it satifies the conditions 3. 2i) and
3. 2i1).

Remark 3.5 Since the system 3 of (2.1) is overbounded by the system 3, of (3.1),
Theorem 3.1 and Theorem 3.2 are immediate from Theorem 3.3 and Theorem 3. 4.
Theorem 3.1 and Theorem 3. 2 present sufficient conditions for the quadratic stability of
the system 3 in terms of two matrices with lower-order and corresponding H..-norm,
which simplifies considerably the stability analysis of the overall system. Theorem 3. 3 and
Theorem 3. 4 show that the conditions are also necessary for the quadratic stability of the
overbounding system 3, corresponding to the system 3. Comparing with applying directly
Lemma 2. 2 to the system 3,no extra conservativeness is introduced by using Theorem 3.
1 and Theorem 3. 2. For the degree of conservativeness introduced by overbounding the
system 3 with the system 3, pf (3. 1), the reader is referred to reference [9].

The following preliminaries will be used in the proof of Theorem 3. 3.

Lemma 3.5 The system (2. 5) is qudaratically stable if and only if one of the fol-
lowing two conditions hold:

3. 51) There exists a positive definite symmetric matrix P ,such that

(AP + PA° 4+ PD*(D")TP + (E°)'E® < 0

3.5i1) A’is a stability matrix,and || E°(s] — A°)"'D" | .. < 1.

Lemma 3. 6 If the system (2. 5) is quadratically stable,then there exists a constant
€ > 0 and a uniquely positive definite symmetric matrix P, such that

(ADTP + P(A)" + PD*(D°)'P + (EOTE’ + el = 0.
and A° + D°(D°)TP is asymptotically stable.
Lemmas 3.5 and 3. 6 are consequences of the results in [8],the proofs are omitted.

Consider the matrix 7'(ny,7,q) € R+ > %% given by

e 0 0
T (noyn,1) = diagll,, 1,1, T(on)= |0 I, T,/ @>1D, QG4
g T, Tyl
where T, =[—1, —1, - —I]171T;=[1, I, - I1,],T,=diagll, I, - 1,],
and I, denotes a # X k identity matrix. Let the matrix 7" € R®™*¥>*"™") defined as fol-
lows
T=TO)TM)TWN —1) (3.5)
where T°(/) = diag[T (ng,n, N — &) I, = I,]G=0,1,+ N—1,T,wn,N—1)

is given by (3. 4).
By computing directly ,we have
Lemma 3. 7 Let A be given by (2.2a),dnd J = diaglJ, J, - J,] €
R TNIX 0o+ M) with J, € R™*% and J; € R"*". Then the following equalities hold: .
3.71) T'AT = diag[A, A, = Al
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3.71) TTAT = diag[A, NN — 1)A4,, - 64, 2A4,], where
A, NL,
4= | :
NM, N[A, + (N —1H,]
3.7ii) TTJT = diag[J, NJ, NN —1J, - 6J, 241
3. 7T (T )T = diaglJe 1/NJ, 1/[NWN—DI Ji = 1/6J, 1/2]1].
Proof of Theorem 3. 3
Sufficiency. Suppose that the conditions 3. 1i) and 3. 1ii) hold. By Lemma 3. 5,there

exist positive definite symmetric matrices P, and P,, such that

Yp(Apst) ZAIP,,+PPAP+P,,DPD:P/.+E}:EP<0s (3 68)
Y’”(A"l ‘Pm) — A$Pm + P,,,A,,, + PmDmD:EPm + E;I;IEM < 0- (3. 6b)
Pm=p ' '
Let P, = l: u m:l(Pu € R™"), Consider the matrix P € R M2+ N) defined as fol-
10 Pll )

P.: l:gij]’ (i’j = Osl;"'vN) (3- 7)
where Boo = P009g0i == 1/NP01,g;0 == I/NPIO,g” = [P“ + N(N — 1)Pm:|/[\/2 and g, = oz
— NP,)/N* ,(i,j=1,,N;i % j). Let

Y(A,P) = AP + PA+ PDD'P + E'E. (3.8)
By computing directly ,we have
DD" = diag[a,af + Naza! D,DL -+ D,D,], (3.9a)
ETE = diag[a,a} + Nasx! EIE, -+ ENE,], (3.9b)
D,D} = diag[a,at + Na,a; 1/ND,D, ], (3. 9¢)
E}E, = diag[a,a] + Naxa; NELE,]. (3.9d)

From Lemma 3. 7,equalities (3.7) and (3. 9),it implies

TTY (AP)T = diag[Y,(4,,P,) NN — 1DY,(A,,P,) - 2Y.(4,.2,)]<0.
Since the matrix 7" is nonsingular,Y (A,P) < 0. By Lemma 3. 5,the system 2, is quadrati-
cally stable.

Necessity.  Suppose that the system 3, is quadratically stable. By lemma 3. 6,there
exists a constant e > 0 and a uniquely positive definite symmetric matrix I’ such that Y (A,
P) 4+ eI = 0 and A + DD"P is asymptotically stable. Similar to the above argument,it is
easy to show that the conditions 3. 1i) and 3. 1ii) hold. Thus,the proof of Theorem 3.3 is
completed. Q.E.D.

The proof of Theorem 3. 4 is similar.and is omitted.
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