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Robust Excitation Controllers Design for Power Systems

LI Shurong,SUN Chunxiao,SUN Yuanzhang and LU Qiang
(Department of Electrical Engineering, Tsinghua University * Beijing,100084,PRC)

Abstract; In this paper,a kind of robust excitation controllers for power systems is proposed.
The design principle is based on nonlinear H.. control theory for affine systems. The controller in-
volves two parts:one is linear optimal excitation controller and the other is an extra compensation
part. The simulation show that the transient properties of power systems are greatly improved by
using H. controllers.
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1 Introduction

It is well known that-any dynamical systems can not be explicitly described by a set of
differential equations,because uncertainty always exists. Uncertainties include variation of
dynamics and external disturbances. In power systems,apart from the modelling error of
dynamics, external disturbances may caused by suddenly applied loads, occurrence of
faults, the loss of excitation in the field of a generator and switching, etc. . Such distur-
bances are very destructive to the stability of power system operation. Thus,besides devel-
oping protection devices,improving control schemes is important and necessary. In this pa-
per,a new robust excitation controller of power systems is designed which is based on the
nonlinear H..control theory. The structure of the proprosed controller in the paper con-
sists of two parts:one is a linear quadratic optimal control and the other is a compensation
part which guarantees the closed loop excitation system has an L, gain as small as possible .
2 Nonlinear H.. Control

In this paper, a vector x denotes a column vector and its transposition is written to be
z". The norm of x is denoted by | z || which is Euclidian. Let A be an »nXn matrix. Its

induced norm is denoted by | A || defined as follows:

" A “ = ¥ Amnx( ATA) 1,

where A( ¢ ) denotes the eigenvalue set of a matrix.
Consider a smooth affine nonlinear control system
z = f(2) + gi(@)o + g,(2)u,
z = h(x) + K®)u,

where £ € R", u€ R”, w€ER", 2ER’ are called state, control, disturbance and output (or

()
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where z € R", € R”, wER", zER" are called state, control, disturbance and output (or
penalty) variables respectively; f is a smooth vector field and g2 ER™, g, ER™, h(x) €

R, K(x)ER™*" are smooth maps. Assume f(0)=0, h(0)=0.
Nonlinear H.. control requires that designing a controller and finding a smallest posi-

tive number v, such that
1) Closed loop system is asymptotic stable.
iy’ 7
2) [henrae<r oz, vrzo, 7>7..
0 ¢ 0
From the matured literatures [1,2,4],we have known that above H.. control problem

can be answered by using dissipative system and differential game theories. Assume ma-

trix R(z)=K"(z)K (x) is nonsingular for ¥ x&R", and write VA,.=%%. We have the fol-

lowing important results.
Proposition 2. 1 The nonlinear H.. control problem of () is solvable iff

1) there exists an C! nonnegative function V(2), V(0)=0, such that
V.f @) + @ hi) + FV.R@VIE <0, M)

where
Fx) =f(x) — g2(x)R (@)K (x)h(x)

h(z) = — K@R ()K" (@)h(x),

Rz) =%g1(1)gf<x) — g, (DR (2)gl () 5

2) Set u == R™ (2) (38} @IVI + KT @h(@)).
The inequality (1) is called a Hamilton-Jacoby-Issacs inequality (Abbr. HJI inequali-

ty). Write || =z || = p.
Proposition 2. 21

(p)» G,(p), H(p) in the neighborhood of x = 0 such that
Zf @) <—Fp), 2"giglz <G(p),

g, R 'gix > G,(p), .

Suppose there exist nonnegative real value functions F (p), G,

k™h < H(p),

then the L, gain 7 has the following estimation:
7 = G/Gyy 7. = NG H/F + G,HD.
When YE[Y* ,00), HJI inequality has the following nonnegative solution
2 ¢ —
v = s, po) = bty

When YE [¥.,Y"], HJI inequality has the following nonnegative solution

Vo) = j:p(nds, 2 f——(j/—zp < p(p) <2 H—G—mp.

B LG

where 7

Gzy A= ‘Z—GH.
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" ; dv 2T .
The proposition 2. 2 can be proven by setting V., = e mn(l).

3 The Design Method of H.. Excitation Controller
Consider an one-machine infinite-bus excitation system, its dynamical equation is

Do

= %p _ D _ @ EY,

W= MPm M(w — Wy M _1,,; ——sind + €y (2)
5 iy 1 Xy — 4I

E" o ’1“ E + 'IIIO de V Osa + ’IIIOVI I_ T

where

d'; rotor angle, in radian; w, rotor speed, in rad/s, w, = 2nfy;E,:internal transient
voltage; V. voltage of the field circuit of a generator; M ; inertia coefficient of a generator
set, in seconds; D, damping constant, in per unit;V,; voltage of infinite-bus, in per uint;

e al . . . . . M
Ta: field circuit time constant, in seconds;x,: d-axis synchronous reactance of a

generator, in per unit ;2 d-axis transient reactance, in per unit; x,s: = X, + 27 + 277

Zas: = x4 + 27 + 217,27, transformer reactance; xr,; transmission line reactance, in per

unit; P, . mechanical power, assumed to be constant, in per unit;,; = J"f.—"sinﬁ. active
ds

electrical power, in per uint; T, = 7T, == “iEs & :external dlsrurbances

In order to match the system (3), let
2 =0—0yy T=w—uw, x,=EFE —E,,

rv'

" e
where 8,, E;, = 1,: de'lV cosd, + ,1, =LV ,,are equilibrium point and steady-state of (2).
-do dZ

V1 is the voltage of the field circuit in equilibrium point.

In the new coordinates, the dynamical equation is

2 =x,,
‘i2=_§x2+£u1‘_4q( m P)+€l’
) (3)
i‘a=—,l.:ra+,.1 Fa v "Vc05(3 + x)
1 ldo xdz
1 L "V cosd, —|— Vf, + &,
o -l'dz
where Vi=Vsu+Va.

Suppose in steady-state, P,, = P,, then in the neighborhood of equilibrium point,
(3) can be approximated as follows
&y =1y,

Z, =— ax, — bx, — cx; + w,, 4)

s =—dx; — ex; + w, + fu,
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where
D P E,V cosé, w, V.sind,
a = 2 =T = C = 7 T
M’ M Zaz y Mz g
1 e U
d==, = "“—F"Vgsind, [f=-—-+,
T, Ty xus T4y

o =0z |5z 1D + &y 0,=0z, |5 + &, u=V,.

For (4), select an output as follows

L2
lyx,
z = -+ Uy
Vkia, 0
i rokix; Fa

where £,,4,45,%, 4k, £, are constants, r, 7=0.

0 1 1

—e 0 —d

Then R = #%. It is important to choose %,,4,,%; .

1.1

According to the Proposition 2.1, the H.. controller v = — (5
0

V (x) should satisty the following HJI inequality

V@) + ha)"hx) + %V,TR(I)VI <0,

where

0 1 0

Ffx)y=|—b —a —c|x— g,k sk, k),
—e 0 —d
il

(ORAR ST (e () 0

o lzxz a 1

h(x)=l g R(:r)=W01 0(— |0 0 (O
5
0“ 040 14 0 0 fi/rt

485

—(=g:Vi+ K'Cx), and

It is easy to verify that [A,g,] in (4) is controllable, so we can design K, = (k,,4,,

k;) such that
K, = Ry'giP,
where P satisfies a following Riccati matrix equation
PA+ A'P — Pg,R;'g; P +Q =0,
in which Q is a positive definite matrix, R, is a positive number.

Then we have

" fx) =— %xT(Q + Pg,R;'giP)x < — —;4— [l <—Allall?,

(6



486 CONTROL THEORY AND APPLICATIONS Vol. 13

g — %min(&-(Q),i —1,2,3),

nglngS B, ” x ” 5o B = ” 881 ” ’

z'g, %g}x =0,
o

(N

RR< Bl zll? B= || T~ (0,0,0,1)7(0,0,0,1))C =

e
Leto=wzt + 2} + 2%, p(0) = ((11—‘;, and substitute V,,.=p(p)% and (7) into (1), by

simple manipulation, we get an inequality

ﬁl 2J _A_ - 8
gl T g ThRE0 (8)

If (8) has a nonnegative solution, the following condition should be satisfied,

AZ—ﬁ;/fzzo.

We thus have

V B\
A b

7, ="

when? € [7, ,o0),

2] = 232 2y 2920 e
272A — 27 A/ 72A ﬂlﬂngpgzn 27 4/ 72X ﬂlﬂzp.

_ B B
For the smallest? , t.e.. Y =7,
) sl
The feedback control law is
. 1.1 x O
u_' T(Z)(Z(O,O’f)P p +(0q090;79)(z,).

When p=p., the H.. excitation controller is
U = = %((0909.}“) %x _+_ (0;09097‘0)(:1:)-
2 .

It is well known that by using a simple linear transformation, the feedback variables &
— &yand E, — E,,in H.. controller can be replaced by the deviation of terminal voltage AV,

and active power AP, which can be measured directly.

Remark Since?, = M/X » B/ is an invariant in the excitation system, 7. only de-
pends on two parameters 3; and A. Hence the main designing task is to select suitable out-
put and Q.

4 Simulations
Consider the following one-machine infinite bus system(Fig. 1).

The disturbance is assumed to be a three-phase short cut with clearing out time 0. 1s.
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The H.. excitation controller (HEC) is
designed with [, = 40,4, = 40,l; = 40,r, = 1.

the linear optimal excitation controller

RN, AT

(LOEQC) is designed under the constraint dy-

M=100 D=0.15 V=10 1,=50
Yy=1.6 x;=032 X,=001 ¥=054

namics (6) and the quadratic performance in-

dex
oo Fig.1 One-machine infinite bus system
J = J (2"Qx + v"Ryu)de,
i
where Q =diag(25,144,20000), R, =1.
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Fig.2 The transient response of angle(dey). Fig 3 The transient response ol speed.
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112 4 The transient response of terminal voltage Fig. 5 Ihe tuonsient response of active power

5 Conclusions

Similar to the linear optimal excitation control law, the H.. excitation controller de-
signed in this paper is also a linear state feedback. Hence the realization of HEC is much
easier than that of nonlinear excitation controllers®). The H.. controller consists of two

part; — %(0,0,0,ro)Cx, which is a linear quadratic optimal controller; — 1_%(0;0,]')
0 0

%x, which can be viewed as a compensation part such that the closed loop system has an

L,gain 7..
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